This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | clsf | ⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | elpwi | ⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) | |
| 3 | 1 | clsval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) = ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) |
| 4 | fvex | ⊢ ( ( cls ‘ 𝐽 ) ‘ 𝑥 ) ∈ V | |
| 5 | 3 4 | eqeltrrdi | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ 𝑋 ) → ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ∈ V ) |
| 6 | 2 5 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ∈ 𝒫 𝑋 ) → ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ∈ V ) |
| 7 | 1 | clsfval | ⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) ) |
| 8 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) | |
| 9 | 1 | clscld | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑦 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 11 | 6 7 10 | fmpt2d | ⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) : 𝒫 𝑋 ⟶ ( Clsd ‘ 𝐽 ) ) |