This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a subset of a topology's base set is the intersection of all the closed sets that include it. Definition of closure of Munkres p. 94. (Contributed by NM, 10-Sep-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | clsval | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscld.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | clsfval | ⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) ) |
| 3 | 2 | fveq1d | ⊢ ( 𝐽 ∈ Top → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) ‘ 𝑆 ) ) |
| 4 | 3 | adantr | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ( ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) ‘ 𝑆 ) ) |
| 5 | eqid | ⊢ ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) | |
| 6 | sseq1 | ⊢ ( 𝑦 = 𝑆 → ( 𝑦 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑥 ) ) | |
| 7 | 6 | rabbidv | ⊢ ( 𝑦 = 𝑆 → { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } = { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 8 | 7 | inteqd | ⊢ ( 𝑦 = 𝑆 → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 9 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 10 | elpw2g | ⊢ ( 𝑋 ∈ 𝐽 → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 11 | 9 10 | syl | ⊢ ( 𝐽 ∈ Top → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
| 12 | 11 | biimpar | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → 𝑆 ∈ 𝒫 𝑋 ) |
| 13 | 1 | topcld | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ ( Clsd ‘ 𝐽 ) ) |
| 14 | sseq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝑆 ⊆ 𝑥 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 15 | 14 | rspcev | ⊢ ( ( 𝑋 ∈ ( Clsd ‘ 𝐽 ) ∧ 𝑆 ⊆ 𝑋 ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝑆 ⊆ 𝑥 ) |
| 16 | 13 15 | sylan | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝑆 ⊆ 𝑥 ) |
| 17 | intexrab | ⊢ ( ∃ 𝑥 ∈ ( Clsd ‘ 𝐽 ) 𝑆 ⊆ 𝑥 ↔ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ∈ V ) | |
| 18 | 16 17 | sylib | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ∈ V ) |
| 19 | 5 8 12 18 | fvmptd3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( 𝑦 ∈ 𝒫 𝑋 ↦ ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑦 ⊆ 𝑥 } ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |
| 20 | 4 19 | eqtrd | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑆 ⊆ 𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = ∩ { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆 ⊆ 𝑥 } ) |