This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure function is a function from subsets of the base to closed sets. (Contributed by Mario Carneiro, 11-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | clsf | |- ( J e. Top -> ( cls ` J ) : ~P X --> ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | elpwi | |- ( x e. ~P X -> x C_ X ) |
|
| 3 | 1 | clsval | |- ( ( J e. Top /\ x C_ X ) -> ( ( cls ` J ) ` x ) = |^| { y e. ( Clsd ` J ) | x C_ y } ) |
| 4 | fvex | |- ( ( cls ` J ) ` x ) e. _V |
|
| 5 | 3 4 | eqeltrrdi | |- ( ( J e. Top /\ x C_ X ) -> |^| { y e. ( Clsd ` J ) | x C_ y } e. _V ) |
| 6 | 2 5 | sylan2 | |- ( ( J e. Top /\ x e. ~P X ) -> |^| { y e. ( Clsd ` J ) | x C_ y } e. _V ) |
| 7 | 1 | clsfval | |- ( J e. Top -> ( cls ` J ) = ( x e. ~P X |-> |^| { y e. ( Clsd ` J ) | x C_ y } ) ) |
| 8 | elpwi | |- ( y e. ~P X -> y C_ X ) |
|
| 9 | 1 | clscld | |- ( ( J e. Top /\ y C_ X ) -> ( ( cls ` J ) ` y ) e. ( Clsd ` J ) ) |
| 10 | 8 9 | sylan2 | |- ( ( J e. Top /\ y e. ~P X ) -> ( ( cls ` J ) ` y ) e. ( Clsd ` J ) ) |
| 11 | 6 7 10 | fmpt2d | |- ( J e. Top -> ( cls ` J ) : ~P X --> ( Clsd ` J ) ) |