This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure function on the subsets of a topology's base set. (Contributed by NM, 3-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cldval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| Assertion | clsfval | ⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cldval.1 | ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | topopn | ⊢ ( 𝐽 ∈ Top → 𝑋 ∈ 𝐽 ) |
| 3 | pwexg | ⊢ ( 𝑋 ∈ 𝐽 → 𝒫 𝑋 ∈ V ) | |
| 4 | mptexg | ⊢ ( 𝒫 𝑋 ∈ V → ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) ∈ V ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝐽 ∈ Top → ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) ∈ V ) |
| 6 | unieq | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = ∪ 𝐽 ) | |
| 7 | 6 1 | eqtr4di | ⊢ ( 𝑗 = 𝐽 → ∪ 𝑗 = 𝑋 ) |
| 8 | 7 | pweqd | ⊢ ( 𝑗 = 𝐽 → 𝒫 ∪ 𝑗 = 𝒫 𝑋 ) |
| 9 | fveq2 | ⊢ ( 𝑗 = 𝐽 → ( Clsd ‘ 𝑗 ) = ( Clsd ‘ 𝐽 ) ) | |
| 10 | 9 | rabeqdv | ⊢ ( 𝑗 = 𝐽 → { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥 ⊆ 𝑦 } = { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) |
| 11 | 10 | inteqd | ⊢ ( 𝑗 = 𝐽 → ∩ { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥 ⊆ 𝑦 } = ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) |
| 12 | 8 11 | mpteq12dv | ⊢ ( 𝑗 = 𝐽 → ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥 ⊆ 𝑦 } ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) ) |
| 13 | df-cls | ⊢ cls = ( 𝑗 ∈ Top ↦ ( 𝑥 ∈ 𝒫 ∪ 𝑗 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝑗 ) ∣ 𝑥 ⊆ 𝑦 } ) ) | |
| 14 | 12 13 | fvmptg | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) ∈ V ) → ( cls ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) ) |
| 15 | 5 14 | mpdan | ⊢ ( 𝐽 ∈ Top → ( cls ‘ 𝐽 ) = ( 𝑥 ∈ 𝒫 𝑋 ↦ ∩ { 𝑦 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑥 ⊆ 𝑦 } ) ) |