This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closed neighborhood of a vertex in a pseudograph. (Contributed by AV, 10-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clnbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| clnbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | clnbupgr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clnbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | clnbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 | dfclnbgr4 | ⊢ ( 𝑁 ∈ 𝑉 → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) ) |
| 5 | 1 2 | nbupgr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝑁 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
| 6 | 5 | uneq2d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( { 𝑁 } ∪ ( 𝐺 NeighbVtx 𝑁 ) ) = ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) ) |
| 7 | rabdif | ⊢ ( { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } | |
| 8 | 7 | eqcomi | ⊢ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } = ( { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } ) |
| 9 | 8 | uneq2i | ⊢ ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) = ( { 𝑁 } ∪ ( { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } ) ) |
| 10 | undif2 | ⊢ ( { 𝑁 } ∪ ( { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ∖ { 𝑁 } ) ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) | |
| 11 | 9 10 | eqtri | ⊢ ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) |
| 12 | 11 | a1i | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( { 𝑁 } ∪ { 𝑛 ∈ ( 𝑉 ∖ { 𝑁 } ) ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) ) |
| 13 | 4 6 12 | 3eqtrd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → ( 𝐺 ClNeighbVtx 𝑁 ) = ( { 𝑁 } ∪ { 𝑛 ∈ 𝑉 ∣ { 𝑁 , 𝑛 } ∈ 𝐸 } ) ) |