This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph, the closed neighborhood relation is symmetric: a vertex N in a graph G is a neighbor of a second vertex K iff the second vertex K is a neighbor of the first vertex N . (Contributed by AV, 10-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clnbgrsym | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ 𝐾 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | ⊢ ( ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) ↔ ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ) | |
| 2 | eqcom | ⊢ ( 𝑁 = 𝐾 ↔ 𝐾 = 𝑁 ) | |
| 3 | prcom | ⊢ { 𝐾 , 𝑁 } = { 𝑁 , 𝐾 } | |
| 4 | 3 | sseq1i | ⊢ ( { 𝐾 , 𝑁 } ⊆ 𝑒 ↔ { 𝑁 , 𝐾 } ⊆ 𝑒 ) |
| 5 | 4 | rexbii | ⊢ ( ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝐾 } ⊆ 𝑒 ) |
| 6 | 2 5 | orbi12i | ⊢ ( ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ↔ ( 𝐾 = 𝑁 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝐾 } ⊆ 𝑒 ) ) |
| 7 | 1 6 | anbi12i | ⊢ ( ( ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ) ↔ ( ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐾 = 𝑁 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝐾 } ⊆ 𝑒 ) ) ) |
| 8 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 9 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 10 | 8 9 | clnbgrel | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ ( ( 𝑁 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝐾 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝑁 = 𝐾 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝐾 , 𝑁 } ⊆ 𝑒 ) ) ) |
| 11 | 8 9 | clnbgrel | ⊢ ( 𝐾 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ↔ ( ( 𝐾 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( Vtx ‘ 𝐺 ) ) ∧ ( 𝐾 = 𝑁 ∨ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑁 , 𝐾 } ⊆ 𝑒 ) ) ) |
| 12 | 7 10 11 | 3bitr4i | ⊢ ( 𝑁 ∈ ( 𝐺 ClNeighbVtx 𝐾 ) ↔ 𝐾 ∈ ( 𝐺 ClNeighbVtx 𝑁 ) ) |