This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a graph, the closed neighborhood relation is symmetric: a vertex N in a graph G is a neighbor of a second vertex K iff the second vertex K is a neighbor of the first vertex N . (Contributed by AV, 10-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clnbgrsym | |- ( N e. ( G ClNeighbVtx K ) <-> K e. ( G ClNeighbVtx N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom | |- ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) <-> ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) ) |
|
| 2 | eqcom | |- ( N = K <-> K = N ) |
|
| 3 | prcom | |- { K , N } = { N , K } |
|
| 4 | 3 | sseq1i | |- ( { K , N } C_ e <-> { N , K } C_ e ) |
| 5 | 4 | rexbii | |- ( E. e e. ( Edg ` G ) { K , N } C_ e <-> E. e e. ( Edg ` G ) { N , K } C_ e ) |
| 6 | 2 5 | orbi12i | |- ( ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) <-> ( K = N \/ E. e e. ( Edg ` G ) { N , K } C_ e ) ) |
| 7 | 1 6 | anbi12i | |- ( ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) /\ ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) ) <-> ( ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) /\ ( K = N \/ E. e e. ( Edg ` G ) { N , K } C_ e ) ) ) |
| 8 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 9 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 10 | 8 9 | clnbgrel | |- ( N e. ( G ClNeighbVtx K ) <-> ( ( N e. ( Vtx ` G ) /\ K e. ( Vtx ` G ) ) /\ ( N = K \/ E. e e. ( Edg ` G ) { K , N } C_ e ) ) ) |
| 11 | 8 9 | clnbgrel | |- ( K e. ( G ClNeighbVtx N ) <-> ( ( K e. ( Vtx ` G ) /\ N e. ( Vtx ` G ) ) /\ ( K = N \/ E. e e. ( Edg ` G ) { N , K } C_ e ) ) ) |
| 12 | 7 10 11 | 3bitr4i | |- ( N e. ( G ClNeighbVtx K ) <-> K e. ( G ClNeighbVtx N ) ) |