This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007) (Revised by AV, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvs1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmvs1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmvs2.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| Assertion | clmvs2 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 + 𝐴 ) = ( 2 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvs1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmvs1.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | clmvs2.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 4 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 5 | 4 | oveq1i | ⊢ ( 2 · 𝐴 ) = ( ( 1 + 1 ) · 𝐴 ) |
| 6 | 5 | a1i | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 2 · 𝐴 ) = ( ( 1 + 1 ) · 𝐴 ) ) |
| 7 | simpl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) | |
| 8 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 9 | 8 | clm1 | ⊢ ( 𝑊 ∈ ℂMod → 1 = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 11 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 12 | eqid | ⊢ ( 1r ‘ ( Scalar ‘ 𝑊 ) ) = ( 1r ‘ ( Scalar ‘ 𝑊 ) ) | |
| 13 | 8 11 12 | lmod1cl | ⊢ ( 𝑊 ∈ LMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 14 | 10 13 | syl | ⊢ ( 𝑊 ∈ ℂMod → ( 1r ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 15 | 9 14 | eqeltrd | ⊢ ( 𝑊 ∈ ℂMod → 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 16 | 15 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 17 | simpr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 18 | 1 8 2 11 3 | clmvsdir | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ 𝑉 ) ) → ( ( 1 + 1 ) · 𝐴 ) = ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
| 19 | 7 16 16 17 18 | syl13anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( 1 + 1 ) · 𝐴 ) = ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
| 20 | 1 2 | clmvs1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 21 | 20 20 | oveq12d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( 1 · 𝐴 ) + ( 1 · 𝐴 ) ) = ( 𝐴 + 𝐴 ) ) |
| 22 | 6 19 21 | 3eqtrrd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 + 𝐴 ) = ( 2 · 𝐴 ) ) |