This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector plus itself is two times the vector. (Contributed by NM, 1-Feb-2007) (Revised by AV, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvs1.v | |- V = ( Base ` W ) |
|
| clmvs1.s | |- .x. = ( .s ` W ) |
||
| clmvs2.a | |- .+ = ( +g ` W ) |
||
| Assertion | clmvs2 | |- ( ( W e. CMod /\ A e. V ) -> ( A .+ A ) = ( 2 .x. A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvs1.v | |- V = ( Base ` W ) |
|
| 2 | clmvs1.s | |- .x. = ( .s ` W ) |
|
| 3 | clmvs2.a | |- .+ = ( +g ` W ) |
|
| 4 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 5 | 4 | oveq1i | |- ( 2 .x. A ) = ( ( 1 + 1 ) .x. A ) |
| 6 | 5 | a1i | |- ( ( W e. CMod /\ A e. V ) -> ( 2 .x. A ) = ( ( 1 + 1 ) .x. A ) ) |
| 7 | simpl | |- ( ( W e. CMod /\ A e. V ) -> W e. CMod ) |
|
| 8 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 9 | 8 | clm1 | |- ( W e. CMod -> 1 = ( 1r ` ( Scalar ` W ) ) ) |
| 10 | clmlmod | |- ( W e. CMod -> W e. LMod ) |
|
| 11 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 12 | eqid | |- ( 1r ` ( Scalar ` W ) ) = ( 1r ` ( Scalar ` W ) ) |
|
| 13 | 8 11 12 | lmod1cl | |- ( W e. LMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 14 | 10 13 | syl | |- ( W e. CMod -> ( 1r ` ( Scalar ` W ) ) e. ( Base ` ( Scalar ` W ) ) ) |
| 15 | 9 14 | eqeltrd | |- ( W e. CMod -> 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 16 | 15 | adantr | |- ( ( W e. CMod /\ A e. V ) -> 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 17 | simpr | |- ( ( W e. CMod /\ A e. V ) -> A e. V ) |
|
| 18 | 1 8 2 11 3 | clmvsdir | |- ( ( W e. CMod /\ ( 1 e. ( Base ` ( Scalar ` W ) ) /\ 1 e. ( Base ` ( Scalar ` W ) ) /\ A e. V ) ) -> ( ( 1 + 1 ) .x. A ) = ( ( 1 .x. A ) .+ ( 1 .x. A ) ) ) |
| 19 | 7 16 16 17 18 | syl13anc | |- ( ( W e. CMod /\ A e. V ) -> ( ( 1 + 1 ) .x. A ) = ( ( 1 .x. A ) .+ ( 1 .x. A ) ) ) |
| 20 | 1 2 | clmvs1 | |- ( ( W e. CMod /\ A e. V ) -> ( 1 .x. A ) = A ) |
| 21 | 20 20 | oveq12d | |- ( ( W e. CMod /\ A e. V ) -> ( ( 1 .x. A ) .+ ( 1 .x. A ) ) = ( A .+ A ) ) |
| 22 | 6 19 21 | 3eqtrrd | |- ( ( W e. CMod /\ A e. V ) -> ( A .+ A ) = ( 2 .x. A ) ) |