This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 5-Aug-2007) (Revised by AV, 29-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmpm1dir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmpm1dir.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmpm1dir.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| Assertion | clmsub4 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( - 1 · ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐴 + ( - 1 · 𝐶 ) ) + ( 𝐵 + ( - 1 · 𝐷 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmpm1dir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmpm1dir.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | clmpm1dir.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 4 | simpl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ ℂMod ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 7 | 5 6 | clmneg1 | ⊢ ( 𝑊 ∈ ℂMod → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 9 | simpl | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → 𝐶 ∈ 𝑉 ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) |
| 11 | simpr | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → 𝐷 ∈ 𝑉 ) | |
| 12 | 11 | adantl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝐷 ∈ 𝑉 ) |
| 13 | 1 5 2 6 3 | clmvsdi | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( - 1 · ( 𝐶 + 𝐷 ) ) = ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) |
| 14 | 4 8 10 12 13 | syl13anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( - 1 · ( 𝐶 + 𝐷 ) ) = ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) |
| 15 | 14 | 3adant2 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( - 1 · ( 𝐶 + 𝐷 ) ) = ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) |
| 16 | 15 | oveq2d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( - 1 · ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐴 + 𝐵 ) + ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) ) |
| 17 | clmabl | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ Abel ) | |
| 18 | ablcmn | ⊢ ( 𝑊 ∈ Abel → 𝑊 ∈ CMnd ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ CMnd ) |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → 𝑊 ∈ CMnd ) |
| 21 | simp2 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) | |
| 22 | simpl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) | |
| 23 | 7 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 24 | simpr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → 𝐶 ∈ 𝑉 ) | |
| 25 | 1 5 2 6 | clmvscl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐶 ∈ 𝑉 ) → ( - 1 · 𝐶 ) ∈ 𝑉 ) |
| 26 | 22 23 24 25 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐶 ∈ 𝑉 ) → ( - 1 · 𝐶 ) ∈ 𝑉 ) |
| 27 | simpl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) | |
| 28 | 7 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 29 | simpr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → 𝐷 ∈ 𝑉 ) | |
| 30 | 1 5 2 6 | clmvscl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐷 ∈ 𝑉 ) → ( - 1 · 𝐷 ) ∈ 𝑉 ) |
| 31 | 27 28 29 30 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐷 ∈ 𝑉 ) → ( - 1 · 𝐷 ) ∈ 𝑉 ) |
| 32 | 26 31 | anim12dan | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( - 1 · 𝐶 ) ∈ 𝑉 ∧ ( - 1 · 𝐷 ) ∈ 𝑉 ) ) |
| 33 | 32 | 3adant2 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( - 1 · 𝐶 ) ∈ 𝑉 ∧ ( - 1 · 𝐷 ) ∈ 𝑉 ) ) |
| 34 | 1 3 | cmn4 | ⊢ ( ( 𝑊 ∈ CMnd ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( ( - 1 · 𝐶 ) ∈ 𝑉 ∧ ( - 1 · 𝐷 ) ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) = ( ( 𝐴 + ( - 1 · 𝐶 ) ) + ( 𝐵 + ( - 1 · 𝐷 ) ) ) ) |
| 35 | 20 21 33 34 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( ( - 1 · 𝐶 ) + ( - 1 · 𝐷 ) ) ) = ( ( 𝐴 + ( - 1 · 𝐶 ) ) + ( 𝐵 + ( - 1 · 𝐷 ) ) ) ) |
| 36 | 16 35 | eqtrd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( ( 𝐴 + 𝐵 ) + ( - 1 · ( 𝐶 + 𝐷 ) ) ) = ( ( 𝐴 + ( - 1 · 𝐶 ) ) + ( 𝐵 + ( - 1 · 𝐷 ) ) ) ) |