This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for scalar product (left-distributivity). ( lmodvsdi analog.) (Contributed by NM, 3-Nov-2006) (Revised by AV, 28-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmvscl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| clmvscl.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmvscl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| clmvsdir.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| Assertion | clmvsdi | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 + 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) + ( 𝐴 · 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmvscl.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmvscl.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 3 | clmvscl.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | clmvscl.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | clmvsdir.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 6 | clmlmod | ⊢ ( 𝑊 ∈ ℂMod → 𝑊 ∈ LMod ) | |
| 7 | 1 5 2 3 4 | lmodvsdi | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 + 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) + ( 𝐴 · 𝑌 ) ) ) |
| 8 | 6 7 | sylan | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑋 + 𝑌 ) ) = ( ( 𝐴 · 𝑋 ) + ( 𝐴 · 𝑌 ) ) ) |