This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rearrangement of 4 terms in a mixed vector addition and subtraction. (Contributed by NM, 5-Aug-2007) (Revised by AV, 29-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmpm1dir.v | |- V = ( Base ` W ) |
|
| clmpm1dir.s | |- .x. = ( .s ` W ) |
||
| clmpm1dir.a | |- .+ = ( +g ` W ) |
||
| Assertion | clmsub4 | |- ( ( W e. CMod /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .+ B ) .+ ( -u 1 .x. ( C .+ D ) ) ) = ( ( A .+ ( -u 1 .x. C ) ) .+ ( B .+ ( -u 1 .x. D ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmpm1dir.v | |- V = ( Base ` W ) |
|
| 2 | clmpm1dir.s | |- .x. = ( .s ` W ) |
|
| 3 | clmpm1dir.a | |- .+ = ( +g ` W ) |
|
| 4 | simpl | |- ( ( W e. CMod /\ ( C e. V /\ D e. V ) ) -> W e. CMod ) |
|
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 7 | 5 6 | clmneg1 | |- ( W e. CMod -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 8 | 7 | adantr | |- ( ( W e. CMod /\ ( C e. V /\ D e. V ) ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 9 | simpl | |- ( ( C e. V /\ D e. V ) -> C e. V ) |
|
| 10 | 9 | adantl | |- ( ( W e. CMod /\ ( C e. V /\ D e. V ) ) -> C e. V ) |
| 11 | simpr | |- ( ( C e. V /\ D e. V ) -> D e. V ) |
|
| 12 | 11 | adantl | |- ( ( W e. CMod /\ ( C e. V /\ D e. V ) ) -> D e. V ) |
| 13 | 1 5 2 6 3 | clmvsdi | |- ( ( W e. CMod /\ ( -u 1 e. ( Base ` ( Scalar ` W ) ) /\ C e. V /\ D e. V ) ) -> ( -u 1 .x. ( C .+ D ) ) = ( ( -u 1 .x. C ) .+ ( -u 1 .x. D ) ) ) |
| 14 | 4 8 10 12 13 | syl13anc | |- ( ( W e. CMod /\ ( C e. V /\ D e. V ) ) -> ( -u 1 .x. ( C .+ D ) ) = ( ( -u 1 .x. C ) .+ ( -u 1 .x. D ) ) ) |
| 15 | 14 | 3adant2 | |- ( ( W e. CMod /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( -u 1 .x. ( C .+ D ) ) = ( ( -u 1 .x. C ) .+ ( -u 1 .x. D ) ) ) |
| 16 | 15 | oveq2d | |- ( ( W e. CMod /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .+ B ) .+ ( -u 1 .x. ( C .+ D ) ) ) = ( ( A .+ B ) .+ ( ( -u 1 .x. C ) .+ ( -u 1 .x. D ) ) ) ) |
| 17 | clmabl | |- ( W e. CMod -> W e. Abel ) |
|
| 18 | ablcmn | |- ( W e. Abel -> W e. CMnd ) |
|
| 19 | 17 18 | syl | |- ( W e. CMod -> W e. CMnd ) |
| 20 | 19 | 3ad2ant1 | |- ( ( W e. CMod /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> W e. CMnd ) |
| 21 | simp2 | |- ( ( W e. CMod /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( A e. V /\ B e. V ) ) |
|
| 22 | simpl | |- ( ( W e. CMod /\ C e. V ) -> W e. CMod ) |
|
| 23 | 7 | adantr | |- ( ( W e. CMod /\ C e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 24 | simpr | |- ( ( W e. CMod /\ C e. V ) -> C e. V ) |
|
| 25 | 1 5 2 6 | clmvscl | |- ( ( W e. CMod /\ -u 1 e. ( Base ` ( Scalar ` W ) ) /\ C e. V ) -> ( -u 1 .x. C ) e. V ) |
| 26 | 22 23 24 25 | syl3anc | |- ( ( W e. CMod /\ C e. V ) -> ( -u 1 .x. C ) e. V ) |
| 27 | simpl | |- ( ( W e. CMod /\ D e. V ) -> W e. CMod ) |
|
| 28 | 7 | adantr | |- ( ( W e. CMod /\ D e. V ) -> -u 1 e. ( Base ` ( Scalar ` W ) ) ) |
| 29 | simpr | |- ( ( W e. CMod /\ D e. V ) -> D e. V ) |
|
| 30 | 1 5 2 6 | clmvscl | |- ( ( W e. CMod /\ -u 1 e. ( Base ` ( Scalar ` W ) ) /\ D e. V ) -> ( -u 1 .x. D ) e. V ) |
| 31 | 27 28 29 30 | syl3anc | |- ( ( W e. CMod /\ D e. V ) -> ( -u 1 .x. D ) e. V ) |
| 32 | 26 31 | anim12dan | |- ( ( W e. CMod /\ ( C e. V /\ D e. V ) ) -> ( ( -u 1 .x. C ) e. V /\ ( -u 1 .x. D ) e. V ) ) |
| 33 | 32 | 3adant2 | |- ( ( W e. CMod /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( -u 1 .x. C ) e. V /\ ( -u 1 .x. D ) e. V ) ) |
| 34 | 1 3 | cmn4 | |- ( ( W e. CMnd /\ ( A e. V /\ B e. V ) /\ ( ( -u 1 .x. C ) e. V /\ ( -u 1 .x. D ) e. V ) ) -> ( ( A .+ B ) .+ ( ( -u 1 .x. C ) .+ ( -u 1 .x. D ) ) ) = ( ( A .+ ( -u 1 .x. C ) ) .+ ( B .+ ( -u 1 .x. D ) ) ) ) |
| 35 | 20 21 33 34 | syl3anc | |- ( ( W e. CMod /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .+ B ) .+ ( ( -u 1 .x. C ) .+ ( -u 1 .x. D ) ) ) = ( ( A .+ ( -u 1 .x. C ) ) .+ ( B .+ ( -u 1 .x. D ) ) ) ) |
| 36 | 16 35 | eqtrd | |- ( ( W e. CMod /\ ( A e. V /\ B e. V ) /\ ( C e. V /\ D e. V ) ) -> ( ( A .+ B ) .+ ( -u 1 .x. ( C .+ D ) ) ) = ( ( A .+ ( -u 1 .x. C ) ) .+ ( B .+ ( -u 1 .x. D ) ) ) ) |