This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtractive distributive law for the scalar product of a subcomplex module. (Contributed by NM, 31-Jul-2007) (Revised by AV, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmpm1dir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmpm1dir.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmpm1dir.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| clmpm1dir.k | ⊢ 𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | ||
| Assertion | clmpm1dir | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) + ( - 1 · ( 𝐵 · 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmpm1dir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmpm1dir.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | clmpm1dir.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 4 | clmpm1dir.k | ⊢ 𝐾 = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 7 | simpl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ ℂMod ) | |
| 8 | simpr1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐾 ) | |
| 9 | simpr2 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝐾 ) | |
| 10 | simpr3 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) | |
| 11 | 1 2 5 4 6 7 8 9 10 | clmsubdir | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝐶 ) ) ) |
| 12 | 1 5 2 4 | clmvscl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 · 𝐶 ) ∈ 𝑉 ) |
| 13 | 7 8 10 12 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 · 𝐶 ) ∈ 𝑉 ) |
| 14 | 1 5 2 4 | clmvscl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 · 𝐶 ) ∈ 𝑉 ) |
| 15 | 7 9 10 14 | syl3anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐵 · 𝐶 ) ∈ 𝑉 ) |
| 16 | eqid | ⊢ ( invg ‘ 𝑊 ) = ( invg ‘ 𝑊 ) | |
| 17 | 1 3 16 6 | grpsubval | ⊢ ( ( ( 𝐴 · 𝐶 ) ∈ 𝑉 ∧ ( 𝐵 · 𝐶 ) ∈ 𝑉 ) → ( ( 𝐴 · 𝐶 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 · 𝐶 ) + ( ( invg ‘ 𝑊 ) ‘ ( 𝐵 · 𝐶 ) ) ) ) |
| 18 | 13 15 17 | syl2anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐶 ) ( -g ‘ 𝑊 ) ( 𝐵 · 𝐶 ) ) = ( ( 𝐴 · 𝐶 ) + ( ( invg ‘ 𝑊 ) ‘ ( 𝐵 · 𝐶 ) ) ) ) |
| 19 | 1 16 5 2 | clmvneg1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐵 · 𝐶 ) ∈ 𝑉 ) → ( - 1 · ( 𝐵 · 𝐶 ) ) = ( ( invg ‘ 𝑊 ) ‘ ( 𝐵 · 𝐶 ) ) ) |
| 20 | 19 | eqcomd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐵 · 𝐶 ) ∈ 𝑉 ) → ( ( invg ‘ 𝑊 ) ‘ ( 𝐵 · 𝐶 ) ) = ( - 1 · ( 𝐵 · 𝐶 ) ) ) |
| 21 | 7 15 20 | syl2anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( invg ‘ 𝑊 ) ‘ ( 𝐵 · 𝐶 ) ) = ( - 1 · ( 𝐵 · 𝐶 ) ) ) |
| 22 | 21 | oveq2d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐶 ) + ( ( invg ‘ 𝑊 ) ‘ ( 𝐵 · 𝐶 ) ) ) = ( ( 𝐴 · 𝐶 ) + ( - 1 · ( 𝐵 · 𝐶 ) ) ) ) |
| 23 | 11 18 22 | 3eqtrd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) · 𝐶 ) = ( ( 𝐴 · 𝐶 ) + ( - 1 · ( 𝐵 · 𝐶 ) ) ) ) |