This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtractive distributive law for the scalar product of a subcomplex module. (Contributed by NM, 31-Jul-2007) (Revised by AV, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmpm1dir.v | |- V = ( Base ` W ) |
|
| clmpm1dir.s | |- .x. = ( .s ` W ) |
||
| clmpm1dir.a | |- .+ = ( +g ` W ) |
||
| clmpm1dir.k | |- K = ( Base ` ( Scalar ` W ) ) |
||
| Assertion | clmpm1dir | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> ( ( A - B ) .x. C ) = ( ( A .x. C ) .+ ( -u 1 .x. ( B .x. C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmpm1dir.v | |- V = ( Base ` W ) |
|
| 2 | clmpm1dir.s | |- .x. = ( .s ` W ) |
|
| 3 | clmpm1dir.a | |- .+ = ( +g ` W ) |
|
| 4 | clmpm1dir.k | |- K = ( Base ` ( Scalar ` W ) ) |
|
| 5 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 6 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 7 | simpl | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> W e. CMod ) |
|
| 8 | simpr1 | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> A e. K ) |
|
| 9 | simpr2 | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> B e. K ) |
|
| 10 | simpr3 | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> C e. V ) |
|
| 11 | 1 2 5 4 6 7 8 9 10 | clmsubdir | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> ( ( A - B ) .x. C ) = ( ( A .x. C ) ( -g ` W ) ( B .x. C ) ) ) |
| 12 | 1 5 2 4 | clmvscl | |- ( ( W e. CMod /\ A e. K /\ C e. V ) -> ( A .x. C ) e. V ) |
| 13 | 7 8 10 12 | syl3anc | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> ( A .x. C ) e. V ) |
| 14 | 1 5 2 4 | clmvscl | |- ( ( W e. CMod /\ B e. K /\ C e. V ) -> ( B .x. C ) e. V ) |
| 15 | 7 9 10 14 | syl3anc | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> ( B .x. C ) e. V ) |
| 16 | eqid | |- ( invg ` W ) = ( invg ` W ) |
|
| 17 | 1 3 16 6 | grpsubval | |- ( ( ( A .x. C ) e. V /\ ( B .x. C ) e. V ) -> ( ( A .x. C ) ( -g ` W ) ( B .x. C ) ) = ( ( A .x. C ) .+ ( ( invg ` W ) ` ( B .x. C ) ) ) ) |
| 18 | 13 15 17 | syl2anc | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> ( ( A .x. C ) ( -g ` W ) ( B .x. C ) ) = ( ( A .x. C ) .+ ( ( invg ` W ) ` ( B .x. C ) ) ) ) |
| 19 | 1 16 5 2 | clmvneg1 | |- ( ( W e. CMod /\ ( B .x. C ) e. V ) -> ( -u 1 .x. ( B .x. C ) ) = ( ( invg ` W ) ` ( B .x. C ) ) ) |
| 20 | 19 | eqcomd | |- ( ( W e. CMod /\ ( B .x. C ) e. V ) -> ( ( invg ` W ) ` ( B .x. C ) ) = ( -u 1 .x. ( B .x. C ) ) ) |
| 21 | 7 15 20 | syl2anc | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> ( ( invg ` W ) ` ( B .x. C ) ) = ( -u 1 .x. ( B .x. C ) ) ) |
| 22 | 21 | oveq2d | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> ( ( A .x. C ) .+ ( ( invg ` W ) ` ( B .x. C ) ) ) = ( ( A .x. C ) .+ ( -u 1 .x. ( B .x. C ) ) ) ) |
| 23 | 11 18 22 | 3eqtrd | |- ( ( W e. CMod /\ ( A e. K /\ B e. K /\ C e. V ) ) -> ( ( A - B ) .x. C ) = ( ( A .x. C ) .+ ( -u 1 .x. ( B .x. C ) ) ) ) |