This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double negative of a vector. (Contributed by NM, 6-Aug-2007) (Revised by AV, 21-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clmpm1dir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| clmpm1dir.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| clmpm1dir.a | ⊢ + = ( +g ‘ 𝑊 ) | ||
| Assertion | clmnegneg | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( - 1 · ( - 1 · 𝐴 ) ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clmpm1dir.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | clmpm1dir.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 3 | clmpm1dir.a | ⊢ + = ( +g ‘ 𝑊 ) | |
| 4 | neg1mulneg1e1 | ⊢ ( - 1 · - 1 ) = 1 | |
| 5 | 4 | oveq1i | ⊢ ( ( - 1 · - 1 ) · 𝐴 ) = ( 1 · 𝐴 ) |
| 6 | simpl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ ℂMod ) | |
| 7 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 8 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 9 | 7 8 | clmneg1 | ⊢ ( 𝑊 ∈ ℂMod → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 11 | simpr | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 12 | 1 7 2 8 | clmvsass | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ - 1 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝐴 ∈ 𝑉 ) ) → ( ( - 1 · - 1 ) · 𝐴 ) = ( - 1 · ( - 1 · 𝐴 ) ) ) |
| 13 | 6 10 10 11 12 | syl13anc | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( ( - 1 · - 1 ) · 𝐴 ) = ( - 1 · ( - 1 · 𝐴 ) ) ) |
| 14 | 1 2 | clmvs1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 15 | 5 13 14 | 3eqtr3a | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝑉 ) → ( - 1 · ( - 1 · 𝐴 ) ) = 𝐴 ) |