This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Comparison of a constant to the limit of a sequence. (Contributed by NM, 28-Feb-2008) (Revised by Mario Carneiro, 1-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| climlec2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | ||
| climlec2.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | ||
| climlec2.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐵 ) | ||
| climlec2.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | ||
| climlec2.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ≤ ( 𝐹 ‘ 𝑘 ) ) | ||
| Assertion | climlec2 | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clim2ser.1 | ⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) | |
| 2 | climlec2.2 | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 3 | climlec2.3 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 4 | climlec2.4 | ⊢ ( 𝜑 → 𝐹 ⇝ 𝐵 ) | |
| 5 | climlec2.5 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( 𝐹 ‘ 𝑘 ) ∈ ℝ ) | |
| 6 | climlec2.6 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ≤ ( 𝐹 ‘ 𝑘 ) ) | |
| 7 | 3 | recnd | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
| 8 | 0z | ⊢ 0 ∈ ℤ | |
| 9 | uzssz | ⊢ ( ℤ≥ ‘ 0 ) ⊆ ℤ | |
| 10 | zex | ⊢ ℤ ∈ V | |
| 11 | 9 10 | climconst2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 0 ∈ ℤ ) → ( ℤ × { 𝐴 } ) ⇝ 𝐴 ) |
| 12 | 7 8 11 | sylancl | ⊢ ( 𝜑 → ( ℤ × { 𝐴 } ) ⇝ 𝐴 ) |
| 13 | eluzelz | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑘 ∈ ℤ ) | |
| 14 | 13 1 | eleq2s | ⊢ ( 𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ ) |
| 15 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝑘 ∈ ℤ ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 ) | |
| 16 | 3 14 15 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) = 𝐴 ) |
| 17 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → 𝐴 ∈ ℝ ) |
| 18 | 16 17 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) ∈ ℝ ) |
| 19 | 16 6 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑍 ) → ( ( ℤ × { 𝐴 } ) ‘ 𝑘 ) ≤ ( 𝐹 ‘ 𝑘 ) ) |
| 20 | 1 2 12 4 18 5 19 | climle | ⊢ ( 𝜑 → 𝐴 ≤ 𝐵 ) |