This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate an integer limit on a not-quite-function to a real limit. (Contributed by Mario Carneiro, 17-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climmpt2.1 | |- Z = ( ZZ>= ` M ) |
|
| climmpt2.2 | |- ( ph -> M e. ZZ ) |
||
| climmpt2.3 | |- ( ph -> F e. V ) |
||
| climmpt2.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
||
| Assertion | climmpt2 | |- ( ph -> ( F ~~> A <-> ( n e. Z |-> ( F ` n ) ) ~~>r A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climmpt2.1 | |- Z = ( ZZ>= ` M ) |
|
| 2 | climmpt2.2 | |- ( ph -> M e. ZZ ) |
|
| 3 | climmpt2.3 | |- ( ph -> F e. V ) |
|
| 4 | climmpt2.5 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. CC ) |
|
| 5 | eqid | |- ( n e. Z |-> ( F ` n ) ) = ( n e. Z |-> ( F ` n ) ) |
|
| 6 | 1 5 | climmpt | |- ( ( M e. ZZ /\ F e. V ) -> ( F ~~> A <-> ( n e. Z |-> ( F ` n ) ) ~~> A ) ) |
| 7 | 2 3 6 | syl2anc | |- ( ph -> ( F ~~> A <-> ( n e. Z |-> ( F ` n ) ) ~~> A ) ) |
| 8 | 4 | ralrimiva | |- ( ph -> A. k e. Z ( F ` k ) e. CC ) |
| 9 | fveq2 | |- ( k = m -> ( F ` k ) = ( F ` m ) ) |
|
| 10 | 9 | eleq1d | |- ( k = m -> ( ( F ` k ) e. CC <-> ( F ` m ) e. CC ) ) |
| 11 | 10 | cbvralvw | |- ( A. k e. Z ( F ` k ) e. CC <-> A. m e. Z ( F ` m ) e. CC ) |
| 12 | fveq2 | |- ( m = n -> ( F ` m ) = ( F ` n ) ) |
|
| 13 | 12 | eleq1d | |- ( m = n -> ( ( F ` m ) e. CC <-> ( F ` n ) e. CC ) ) |
| 14 | 13 | cbvralvw | |- ( A. m e. Z ( F ` m ) e. CC <-> A. n e. Z ( F ` n ) e. CC ) |
| 15 | 11 14 | bitri | |- ( A. k e. Z ( F ` k ) e. CC <-> A. n e. Z ( F ` n ) e. CC ) |
| 16 | 8 15 | sylib | |- ( ph -> A. n e. Z ( F ` n ) e. CC ) |
| 17 | 16 | r19.21bi | |- ( ( ph /\ n e. Z ) -> ( F ` n ) e. CC ) |
| 18 | 17 | fmpttd | |- ( ph -> ( n e. Z |-> ( F ` n ) ) : Z --> CC ) |
| 19 | 1 2 18 | rlimclim | |- ( ph -> ( ( n e. Z |-> ( F ` n ) ) ~~>r A <-> ( n e. Z |-> ( F ` n ) ) ~~> A ) ) |
| 20 | 7 19 | bitr4d | |- ( ph -> ( F ~~> A <-> ( n e. Z |-> ( F ` n ) ) ~~>r A ) ) |