This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative sequence converges to a nonnegative number. (Contributed by NM, 11-Sep-2005) (Proof shortened by Mario Carneiro, 10-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | climshft2.1 | ||
| climshft2.2 | |||
| climrecl.3 | |||
| climrecl.4 | |||
| climge0.5 | |||
| Assertion | climge0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climshft2.1 | ||
| 2 | climshft2.2 | ||
| 3 | climrecl.3 | ||
| 4 | climrecl.4 | ||
| 5 | climge0.5 | ||
| 6 | 1 | uzsup | |
| 7 | 2 6 | syl | |
| 8 | climrel | ||
| 9 | 8 | brrelex1i | |
| 10 | 3 9 | syl | |
| 11 | eqid | ||
| 12 | 1 11 | climmpt | |
| 13 | 2 10 12 | syl2anc | |
| 14 | 3 13 | mpbid | |
| 15 | 4 | recnd | |
| 16 | 15 | fmpttd | |
| 17 | 1 2 16 | rlimclim | |
| 18 | 14 17 | mpbird | |
| 19 | 7 18 4 5 | rlimge0 |