This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | climeu | ⊢ ( 𝐹 ⇝ 𝐴 → ∃! 𝑥 𝐹 ⇝ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcl | ⊢ ( 𝐹 ⇝ 𝐴 → 𝐴 ∈ ℂ ) | |
| 2 | breq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐹 ⇝ 𝑦 ↔ 𝐹 ⇝ 𝐴 ) ) | |
| 3 | 2 | spcegv | ⊢ ( 𝐴 ∈ ℂ → ( 𝐹 ⇝ 𝐴 → ∃ 𝑦 𝐹 ⇝ 𝑦 ) ) |
| 4 | 1 3 | mpcom | ⊢ ( 𝐹 ⇝ 𝐴 → ∃ 𝑦 𝐹 ⇝ 𝑦 ) |
| 5 | climuni | ⊢ ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) | |
| 6 | 5 | gen2 | ⊢ ∀ 𝑦 ∀ 𝑥 ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) |
| 7 | nfv | ⊢ Ⅎ 𝑦 𝐹 ⇝ 𝑥 | |
| 8 | nfv | ⊢ Ⅎ 𝑥 𝐹 ⇝ 𝑦 | |
| 9 | breq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝐹 ⇝ 𝑥 ↔ 𝐹 ⇝ 𝑦 ) ) | |
| 10 | 7 8 9 | cbveuw | ⊢ ( ∃! 𝑥 𝐹 ⇝ 𝑥 ↔ ∃! 𝑦 𝐹 ⇝ 𝑦 ) |
| 11 | breq2 | ⊢ ( 𝑦 = 𝑥 → ( 𝐹 ⇝ 𝑦 ↔ 𝐹 ⇝ 𝑥 ) ) | |
| 12 | 11 | eu4 | ⊢ ( ∃! 𝑦 𝐹 ⇝ 𝑦 ↔ ( ∃ 𝑦 𝐹 ⇝ 𝑦 ∧ ∀ 𝑦 ∀ 𝑥 ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) ) ) |
| 13 | 10 12 | bitri | ⊢ ( ∃! 𝑥 𝐹 ⇝ 𝑥 ↔ ( ∃ 𝑦 𝐹 ⇝ 𝑦 ∧ ∀ 𝑦 ∀ 𝑥 ( ( 𝐹 ⇝ 𝑦 ∧ 𝐹 ⇝ 𝑥 ) → 𝑦 = 𝑥 ) ) ) |
| 14 | 4 6 13 | sylanblrc | ⊢ ( 𝐹 ⇝ 𝐴 → ∃! 𝑥 𝐹 ⇝ 𝑥 ) |