This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An infinite sequence of complex numbers converges to at most one limit. (Contributed by NM, 25-Dec-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | climeu | |- ( F ~~> A -> E! x F ~~> x ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climcl | |- ( F ~~> A -> A e. CC ) |
|
| 2 | breq2 | |- ( y = A -> ( F ~~> y <-> F ~~> A ) ) |
|
| 3 | 2 | spcegv | |- ( A e. CC -> ( F ~~> A -> E. y F ~~> y ) ) |
| 4 | 1 3 | mpcom | |- ( F ~~> A -> E. y F ~~> y ) |
| 5 | climuni | |- ( ( F ~~> y /\ F ~~> x ) -> y = x ) |
|
| 6 | 5 | gen2 | |- A. y A. x ( ( F ~~> y /\ F ~~> x ) -> y = x ) |
| 7 | nfv | |- F/ y F ~~> x |
|
| 8 | nfv | |- F/ x F ~~> y |
|
| 9 | breq2 | |- ( x = y -> ( F ~~> x <-> F ~~> y ) ) |
|
| 10 | 7 8 9 | cbveuw | |- ( E! x F ~~> x <-> E! y F ~~> y ) |
| 11 | breq2 | |- ( y = x -> ( F ~~> y <-> F ~~> x ) ) |
|
| 12 | 11 | eu4 | |- ( E! y F ~~> y <-> ( E. y F ~~> y /\ A. y A. x ( ( F ~~> y /\ F ~~> x ) -> y = x ) ) ) |
| 13 | 10 12 | bitri | |- ( E! x F ~~> x <-> ( E. y F ~~> y /\ A. y A. x ( ( F ~~> y /\ F ~~> x ) -> y = x ) ) ) |
| 14 | 4 6 13 | sylanblrc | |- ( F ~~> A -> E! x F ~~> x ) |