This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the limit relation for complex number sequences. See clim for its relational expression. (Contributed by NM, 28-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-clim | ⊢ ⇝ = { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cli | ⊢ ⇝ | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | vy | ⊢ 𝑦 | |
| 3 | 2 | cv | ⊢ 𝑦 |
| 4 | cc | ⊢ ℂ | |
| 5 | 3 4 | wcel | ⊢ 𝑦 ∈ ℂ |
| 6 | vx | ⊢ 𝑥 | |
| 7 | crp | ⊢ ℝ+ | |
| 8 | vj | ⊢ 𝑗 | |
| 9 | cz | ⊢ ℤ | |
| 10 | vk | ⊢ 𝑘 | |
| 11 | cuz | ⊢ ℤ≥ | |
| 12 | 8 | cv | ⊢ 𝑗 |
| 13 | 12 11 | cfv | ⊢ ( ℤ≥ ‘ 𝑗 ) |
| 14 | 1 | cv | ⊢ 𝑓 |
| 15 | 10 | cv | ⊢ 𝑘 |
| 16 | 15 14 | cfv | ⊢ ( 𝑓 ‘ 𝑘 ) |
| 17 | 16 4 | wcel | ⊢ ( 𝑓 ‘ 𝑘 ) ∈ ℂ |
| 18 | cabs | ⊢ abs | |
| 19 | cmin | ⊢ − | |
| 20 | 16 3 19 | co | ⊢ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) |
| 21 | 20 18 | cfv | ⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) |
| 22 | clt | ⊢ < | |
| 23 | 6 | cv | ⊢ 𝑥 |
| 24 | 21 23 22 | wbr | ⊢ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 |
| 25 | 17 24 | wa | ⊢ ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) |
| 26 | 25 10 13 | wral | ⊢ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) |
| 27 | 26 8 9 | wrex | ⊢ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) |
| 28 | 27 6 7 | wral | ⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) |
| 29 | 5 28 | wa | ⊢ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) |
| 30 | 29 1 2 | copab | ⊢ { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) } |
| 31 | 0 30 | wceq | ⊢ ⇝ = { 〈 𝑓 , 𝑦 〉 ∣ ( 𝑦 ∈ ℂ ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( ( 𝑓 ‘ 𝑘 ) ∈ ℂ ∧ ( abs ‘ ( ( 𝑓 ‘ 𝑘 ) − 𝑦 ) ) < 𝑥 ) ) } |