This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subset property of domain of join. (Contributed by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joindmss.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| joindmss.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| joindmss.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| Assertion | joindmss | ⊢ ( 𝜑 → dom ∨ ⊆ ( 𝐵 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joindmss.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | joindmss.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | joindmss.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 4 | relopabv | ⊢ Rel { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) } | |
| 5 | eqid | ⊢ ( lub ‘ 𝐾 ) = ( lub ‘ 𝐾 ) | |
| 6 | 5 2 | joindm | ⊢ ( 𝐾 ∈ 𝑉 → dom ∨ = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) } ) |
| 7 | 3 6 | syl | ⊢ ( 𝜑 → dom ∨ = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) } ) |
| 8 | 7 | releqd | ⊢ ( 𝜑 → ( Rel dom ∨ ↔ Rel { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) } ) ) |
| 9 | 4 8 | mpbiri | ⊢ ( 𝜑 → Rel dom ∨ ) |
| 10 | vex | ⊢ 𝑥 ∈ V | |
| 11 | 10 | a1i | ⊢ ( 𝜑 → 𝑥 ∈ V ) |
| 12 | vex | ⊢ 𝑦 ∈ V | |
| 13 | 12 | a1i | ⊢ ( 𝜑 → 𝑦 ∈ V ) |
| 14 | 5 2 3 11 13 | joindef | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ dom ∨ ↔ { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) ) |
| 15 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 16 | 3 | adantr | ⊢ ( ( 𝜑 ∧ { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) → 𝐾 ∈ 𝑉 ) |
| 17 | simpr | ⊢ ( ( 𝜑 ∧ { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) | |
| 18 | 1 15 5 16 17 | lubelss | ⊢ ( ( 𝜑 ∧ { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) ) → { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
| 19 | 18 | ex | ⊢ ( 𝜑 → ( { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) → { 𝑥 , 𝑦 } ⊆ 𝐵 ) ) |
| 20 | 10 12 | prss | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ↔ { 𝑥 , 𝑦 } ⊆ 𝐵 ) |
| 21 | opelxpi | ⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ) | |
| 22 | 20 21 | sylbir | ⊢ ( { 𝑥 , 𝑦 } ⊆ 𝐵 → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ) |
| 23 | 19 22 | syl6 | ⊢ ( 𝜑 → ( { 𝑥 , 𝑦 } ∈ dom ( lub ‘ 𝐾 ) → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ) ) |
| 24 | 14 23 | sylbid | ⊢ ( 𝜑 → ( 〈 𝑥 , 𝑦 〉 ∈ dom ∨ → 〈 𝑥 , 𝑦 〉 ∈ ( 𝐵 × 𝐵 ) ) ) |
| 25 | 9 24 | relssdv | ⊢ ( 𝜑 → dom ∨ ⊆ ( 𝐵 × 𝐵 ) ) |