This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a lattice". (Contributed by NM, 18-Oct-2012) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | islat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| islat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | ||
| islat.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| Assertion | islat | ⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | islat.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | islat.j | ⊢ ∨ = ( join ‘ 𝐾 ) | |
| 3 | islat.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 4 | fveq2 | ⊢ ( 𝑙 = 𝐾 → ( join ‘ 𝑙 ) = ( join ‘ 𝐾 ) ) | |
| 5 | 4 2 | eqtr4di | ⊢ ( 𝑙 = 𝐾 → ( join ‘ 𝑙 ) = ∨ ) |
| 6 | 5 | dmeqd | ⊢ ( 𝑙 = 𝐾 → dom ( join ‘ 𝑙 ) = dom ∨ ) |
| 7 | fveq2 | ⊢ ( 𝑙 = 𝐾 → ( Base ‘ 𝑙 ) = ( Base ‘ 𝐾 ) ) | |
| 8 | 7 1 | eqtr4di | ⊢ ( 𝑙 = 𝐾 → ( Base ‘ 𝑙 ) = 𝐵 ) |
| 9 | 8 | sqxpeqd | ⊢ ( 𝑙 = 𝐾 → ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) = ( 𝐵 × 𝐵 ) ) |
| 10 | 6 9 | eqeq12d | ⊢ ( 𝑙 = 𝐾 → ( dom ( join ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ↔ dom ∨ = ( 𝐵 × 𝐵 ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑙 = 𝐾 → ( meet ‘ 𝑙 ) = ( meet ‘ 𝐾 ) ) | |
| 12 | 11 3 | eqtr4di | ⊢ ( 𝑙 = 𝐾 → ( meet ‘ 𝑙 ) = ∧ ) |
| 13 | 12 | dmeqd | ⊢ ( 𝑙 = 𝐾 → dom ( meet ‘ 𝑙 ) = dom ∧ ) |
| 14 | 13 9 | eqeq12d | ⊢ ( 𝑙 = 𝐾 → ( dom ( meet ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ↔ dom ∧ = ( 𝐵 × 𝐵 ) ) ) |
| 15 | 10 14 | anbi12d | ⊢ ( 𝑙 = 𝐾 → ( ( dom ( join ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ∧ dom ( meet ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ) ↔ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) ) |
| 16 | df-lat | ⊢ Lat = { 𝑙 ∈ Poset ∣ ( dom ( join ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ∧ dom ( meet ‘ 𝑙 ) = ( ( Base ‘ 𝑙 ) × ( Base ‘ 𝑙 ) ) ) } | |
| 17 | 15 16 | elrab2 | ⊢ ( 𝐾 ∈ Lat ↔ ( 𝐾 ∈ Poset ∧ ( dom ∨ = ( 𝐵 × 𝐵 ) ∧ dom ∧ = ( 𝐵 × 𝐵 ) ) ) ) |