This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | meetdef.u | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| meetdef.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | ||
| meetdef.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| meetdef.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) | ||
| meetdef.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑍 ) | ||
| Assertion | meetdef | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ↔ { 𝑋 , 𝑌 } ∈ dom 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetdef.u | ⊢ 𝐺 = ( glb ‘ 𝐾 ) | |
| 2 | meetdef.m | ⊢ ∧ = ( meet ‘ 𝐾 ) | |
| 3 | meetdef.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 4 | meetdef.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) | |
| 5 | meetdef.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝑍 ) | |
| 6 | 1 2 | meetdm | ⊢ ( 𝐾 ∈ 𝑉 → dom ∧ = { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom 𝐺 } ) |
| 7 | 6 | eleq2d | ⊢ ( 𝐾 ∈ 𝑉 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ↔ 〈 𝑋 , 𝑌 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom 𝐺 } ) ) |
| 8 | 3 7 | syl | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ↔ 〈 𝑋 , 𝑌 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom 𝐺 } ) ) |
| 9 | preq1 | ⊢ ( 𝑥 = 𝑋 → { 𝑥 , 𝑦 } = { 𝑋 , 𝑦 } ) | |
| 10 | 9 | eleq1d | ⊢ ( 𝑥 = 𝑋 → ( { 𝑥 , 𝑦 } ∈ dom 𝐺 ↔ { 𝑋 , 𝑦 } ∈ dom 𝐺 ) ) |
| 11 | preq2 | ⊢ ( 𝑦 = 𝑌 → { 𝑋 , 𝑦 } = { 𝑋 , 𝑌 } ) | |
| 12 | 11 | eleq1d | ⊢ ( 𝑦 = 𝑌 → ( { 𝑋 , 𝑦 } ∈ dom 𝐺 ↔ { 𝑋 , 𝑌 } ∈ dom 𝐺 ) ) |
| 13 | 10 12 | opelopabg | ⊢ ( ( 𝑋 ∈ 𝑊 ∧ 𝑌 ∈ 𝑍 ) → ( 〈 𝑋 , 𝑌 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom 𝐺 } ↔ { 𝑋 , 𝑌 } ∈ dom 𝐺 ) ) |
| 14 | 4 5 13 | syl2anc | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ { 〈 𝑥 , 𝑦 〉 ∣ { 𝑥 , 𝑦 } ∈ dom 𝐺 } ↔ { 𝑋 , 𝑌 } ∈ dom 𝐺 ) ) |
| 15 | 8 14 | bitrd | ⊢ ( 𝜑 → ( 〈 𝑋 , 𝑌 〉 ∈ dom ∧ ↔ { 𝑋 , 𝑌 } ∈ dom 𝐺 ) ) |