This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The conjugate of a representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjreim | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( 𝐴 − ( i · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 2 | ax-icn | ⊢ i ∈ ℂ | |
| 3 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 4 | mulcl | ⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( i · 𝐵 ) ∈ ℂ ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( 𝐵 ∈ ℝ → ( i · 𝐵 ) ∈ ℂ ) |
| 6 | cjadd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ ( i · 𝐵 ) ) ) ) | |
| 7 | 1 5 6 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ ( i · 𝐵 ) ) ) ) |
| 8 | cjre | ⊢ ( 𝐴 ∈ ℝ → ( ∗ ‘ 𝐴 ) = 𝐴 ) | |
| 9 | cjmul | ⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ∗ ‘ ( i · 𝐵 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐵 ) ) ) | |
| 10 | 2 3 9 | sylancr | ⊢ ( 𝐵 ∈ ℝ → ( ∗ ‘ ( i · 𝐵 ) ) = ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐵 ) ) ) |
| 11 | cji | ⊢ ( ∗ ‘ i ) = - i | |
| 12 | 11 | a1i | ⊢ ( 𝐵 ∈ ℝ → ( ∗ ‘ i ) = - i ) |
| 13 | cjre | ⊢ ( 𝐵 ∈ ℝ → ( ∗ ‘ 𝐵 ) = 𝐵 ) | |
| 14 | 12 13 | oveq12d | ⊢ ( 𝐵 ∈ ℝ → ( ( ∗ ‘ i ) · ( ∗ ‘ 𝐵 ) ) = ( - i · 𝐵 ) ) |
| 15 | mulneg1 | ⊢ ( ( i ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( - i · 𝐵 ) = - ( i · 𝐵 ) ) | |
| 16 | 2 3 15 | sylancr | ⊢ ( 𝐵 ∈ ℝ → ( - i · 𝐵 ) = - ( i · 𝐵 ) ) |
| 17 | 10 14 16 | 3eqtrd | ⊢ ( 𝐵 ∈ ℝ → ( ∗ ‘ ( i · 𝐵 ) ) = - ( i · 𝐵 ) ) |
| 18 | 8 17 | oveqan12d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( ∗ ‘ 𝐴 ) + ( ∗ ‘ ( i · 𝐵 ) ) ) = ( 𝐴 + - ( i · 𝐵 ) ) ) |
| 19 | negsub | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( i · 𝐵 ) ∈ ℂ ) → ( 𝐴 + - ( i · 𝐵 ) ) = ( 𝐴 − ( i · 𝐵 ) ) ) | |
| 20 | 1 5 19 | syl2an | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + - ( i · 𝐵 ) ) = ( 𝐴 − ( i · 𝐵 ) ) ) |
| 21 | 7 18 20 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( 𝐴 − ( i · 𝐵 ) ) ) |