This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The conjugate of the representation of a complex number in terms of real and imaginary parts. (Contributed by NM, 1-Jul-2005) (Proof shortened by Mario Carneiro, 29-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cjreim2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∗ ‘ ( 𝐴 − ( i · 𝐵 ) ) ) = ( 𝐴 + ( i · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cjreim | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) = ( 𝐴 − ( i · 𝐵 ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∗ ‘ ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) = ( ∗ ‘ ( 𝐴 − ( i · 𝐵 ) ) ) ) |
| 3 | simpl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 4 | 3 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐴 ∈ ℂ ) |
| 5 | ax-icn | ⊢ i ∈ ℂ | |
| 6 | 5 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → i ∈ ℂ ) |
| 7 | simpr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) | |
| 8 | 7 | recnd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 9 | 6 8 | mulcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( i · 𝐵 ) ∈ ℂ ) |
| 10 | 4 9 | addcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ ) |
| 11 | cjcj | ⊢ ( ( 𝐴 + ( i · 𝐵 ) ) ∈ ℂ → ( ∗ ‘ ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) = ( 𝐴 + ( i · 𝐵 ) ) ) | |
| 12 | 10 11 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∗ ‘ ( ∗ ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ) = ( 𝐴 + ( i · 𝐵 ) ) ) |
| 13 | 2 12 | eqtr3d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ∗ ‘ ( 𝐴 − ( i · 𝐵 ) ) ) = ( 𝐴 + ( i · 𝐵 ) ) ) |