This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chtwordi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐴 ) ≤ ( θ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 2 | ppifi | ⊢ ( 𝐵 ∈ ℝ → ( ( 0 [,] 𝐵 ) ∩ ℙ ) ∈ Fin ) | |
| 3 | 1 2 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 0 [,] 𝐵 ) ∩ ℙ ) ∈ Fin ) |
| 4 | simpr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) | |
| 5 | 4 | elin2d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
| 6 | prmuz2 | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 𝑝 ∈ ( ℤ≥ ‘ 2 ) ) |
| 8 | eluz2b2 | ⊢ ( 𝑝 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ) | |
| 9 | 7 8 | sylib | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → ( 𝑝 ∈ ℕ ∧ 1 < 𝑝 ) ) |
| 10 | 9 | simpld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
| 11 | 10 | nnred | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ ) |
| 12 | 9 | simprd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 1 < 𝑝 ) |
| 13 | 11 12 | rplogcld | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ+ ) |
| 14 | 13 | rpred | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → ( log ‘ 𝑝 ) ∈ ℝ ) |
| 15 | 13 | rpge0d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) → 0 ≤ ( log ‘ 𝑝 ) ) |
| 16 | 0red | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 0 ∈ ℝ ) | |
| 17 | 0le0 | ⊢ 0 ≤ 0 | |
| 18 | 17 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 0 ≤ 0 ) |
| 19 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 20 | iccss | ⊢ ( ( ( 0 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 0 ≤ 0 ∧ 𝐴 ≤ 𝐵 ) ) → ( 0 [,] 𝐴 ) ⊆ ( 0 [,] 𝐵 ) ) | |
| 21 | 16 1 18 19 20 | syl22anc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 0 [,] 𝐴 ) ⊆ ( 0 [,] 𝐵 ) ) |
| 22 | 21 | ssrind | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ( 0 [,] 𝐴 ) ∩ ℙ ) ⊆ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ) |
| 23 | 3 14 15 22 | fsumless | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ≤ Σ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 24 | chtval | ⊢ ( 𝐴 ∈ ℝ → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 25 | 24 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐴 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐴 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 26 | chtval | ⊢ ( 𝐵 ∈ ℝ → ( θ ‘ 𝐵 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) | |
| 27 | 1 26 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐵 ) = Σ 𝑝 ∈ ( ( 0 [,] 𝐵 ) ∩ ℙ ) ( log ‘ 𝑝 ) ) |
| 28 | 23 25 27 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( θ ‘ 𝐴 ) ≤ ( θ ‘ 𝐵 ) ) |