This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 9-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpwordi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ψ ‘ 𝐴 ) ≤ ( ψ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 1 ... ( ⌊ ‘ 𝐵 ) ) ∈ Fin ) | |
| 2 | elfznn | ⊢ ( 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) → 𝑛 ∈ ℕ ) | |
| 3 | 2 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ) → 𝑛 ∈ ℕ ) |
| 4 | vmacl | ⊢ ( 𝑛 ∈ ℕ → ( Λ ‘ 𝑛 ) ∈ ℝ ) | |
| 5 | 3 4 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ) → ( Λ ‘ 𝑛 ) ∈ ℝ ) |
| 6 | vmage0 | ⊢ ( 𝑛 ∈ ℕ → 0 ≤ ( Λ ‘ 𝑛 ) ) | |
| 7 | 3 6 | syl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) ∧ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ) → 0 ≤ ( Λ ‘ 𝑛 ) ) |
| 8 | flword2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) ) | |
| 9 | fzss2 | ⊢ ( ( ⌊ ‘ 𝐵 ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝐴 ) ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 1 ... ( ⌊ ‘ 𝐴 ) ) ⊆ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ) |
| 11 | 1 5 7 10 | fsumless | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ≤ Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ( Λ ‘ 𝑛 ) ) |
| 12 | chpval | ⊢ ( 𝐴 ∈ ℝ → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) | |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ψ ‘ 𝐴 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐴 ) ) ( Λ ‘ 𝑛 ) ) |
| 14 | chpval | ⊢ ( 𝐵 ∈ ℝ → ( ψ ‘ 𝐵 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ( Λ ‘ 𝑛 ) ) | |
| 15 | 14 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ψ ‘ 𝐵 ) = Σ 𝑛 ∈ ( 1 ... ( ⌊ ‘ 𝐵 ) ) ( Λ ‘ 𝑛 ) ) |
| 16 | 11 13 15 | 3brtr4d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( ψ ‘ 𝐴 ) ≤ ( ψ ‘ 𝐵 ) ) |