This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert lattice is relatively atomic. Remark 2 of Kalmbach p. 149. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chpssat.1 | ⊢ 𝐴 ∈ Cℋ | |
| chpssat.2 | ⊢ 𝐵 ∈ Cℋ | ||
| Assertion | chrelati | ⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpssat.1 | ⊢ 𝐴 ∈ Cℋ | |
| 2 | chpssat.2 | ⊢ 𝐵 ∈ Cℋ | |
| 3 | 1 2 | chpssati | ⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ) |
| 4 | ancom | ⊢ ( ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ↔ ( ¬ 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ) | |
| 5 | pssss | ⊢ ( 𝐴 ⊊ 𝐵 → 𝐴 ⊆ 𝐵 ) | |
| 6 | atelch | ⊢ ( 𝑥 ∈ HAtoms → 𝑥 ∈ Cℋ ) | |
| 7 | chnle | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → ( ¬ 𝑥 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ) ) | |
| 8 | 1 7 | mpan | ⊢ ( 𝑥 ∈ Cℋ → ( ¬ 𝑥 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ) ) |
| 9 | 8 | adantl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Cℋ ) → ( ¬ 𝑥 ⊆ 𝐴 ↔ 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ) ) |
| 10 | ibar | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ⊆ 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐵 ) ) ) | |
| 11 | chlub | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐵 ) ↔ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) ) | |
| 12 | 1 2 11 | mp3an13 | ⊢ ( 𝑥 ∈ Cℋ → ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ⊆ 𝐵 ) ↔ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) ) |
| 13 | 10 12 | sylan9bb | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Cℋ ) → ( 𝑥 ⊆ 𝐵 ↔ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) ) |
| 14 | 9 13 | anbi12d | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝑥 ∈ Cℋ ) → ( ( ¬ 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ↔ ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) ) ) |
| 15 | 5 6 14 | syl2an | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ HAtoms ) → ( ( ¬ 𝑥 ⊆ 𝐴 ∧ 𝑥 ⊆ 𝐵 ) ↔ ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) ) ) |
| 16 | 4 15 | bitrid | ⊢ ( ( 𝐴 ⊊ 𝐵 ∧ 𝑥 ∈ HAtoms ) → ( ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ↔ ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) ) ) |
| 17 | 16 | rexbidva | ⊢ ( 𝐴 ⊊ 𝐵 → ( ∃ 𝑥 ∈ HAtoms ( 𝑥 ⊆ 𝐵 ∧ ¬ 𝑥 ⊆ 𝐴 ) ↔ ∃ 𝑥 ∈ HAtoms ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) ) ) |
| 18 | 3 17 | mpbid | ⊢ ( 𝐴 ⊊ 𝐵 → ∃ 𝑥 ∈ HAtoms ( 𝐴 ⊊ ( 𝐴 ∨ℋ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) ⊆ 𝐵 ) ) |