This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert lattice is relatively atomic. Remark 2 of Kalmbach p. 149. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chpssat.1 | |- A e. CH |
|
| chpssat.2 | |- B e. CH |
||
| Assertion | chrelati | |- ( A C. B -> E. x e. HAtoms ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpssat.1 | |- A e. CH |
|
| 2 | chpssat.2 | |- B e. CH |
|
| 3 | 1 2 | chpssati | |- ( A C. B -> E. x e. HAtoms ( x C_ B /\ -. x C_ A ) ) |
| 4 | ancom | |- ( ( x C_ B /\ -. x C_ A ) <-> ( -. x C_ A /\ x C_ B ) ) |
|
| 5 | pssss | |- ( A C. B -> A C_ B ) |
|
| 6 | atelch | |- ( x e. HAtoms -> x e. CH ) |
|
| 7 | chnle | |- ( ( A e. CH /\ x e. CH ) -> ( -. x C_ A <-> A C. ( A vH x ) ) ) |
|
| 8 | 1 7 | mpan | |- ( x e. CH -> ( -. x C_ A <-> A C. ( A vH x ) ) ) |
| 9 | 8 | adantl | |- ( ( A C_ B /\ x e. CH ) -> ( -. x C_ A <-> A C. ( A vH x ) ) ) |
| 10 | ibar | |- ( A C_ B -> ( x C_ B <-> ( A C_ B /\ x C_ B ) ) ) |
|
| 11 | chlub | |- ( ( A e. CH /\ x e. CH /\ B e. CH ) -> ( ( A C_ B /\ x C_ B ) <-> ( A vH x ) C_ B ) ) |
|
| 12 | 1 2 11 | mp3an13 | |- ( x e. CH -> ( ( A C_ B /\ x C_ B ) <-> ( A vH x ) C_ B ) ) |
| 13 | 10 12 | sylan9bb | |- ( ( A C_ B /\ x e. CH ) -> ( x C_ B <-> ( A vH x ) C_ B ) ) |
| 14 | 9 13 | anbi12d | |- ( ( A C_ B /\ x e. CH ) -> ( ( -. x C_ A /\ x C_ B ) <-> ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) ) |
| 15 | 5 6 14 | syl2an | |- ( ( A C. B /\ x e. HAtoms ) -> ( ( -. x C_ A /\ x C_ B ) <-> ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) ) |
| 16 | 4 15 | bitrid | |- ( ( A C. B /\ x e. HAtoms ) -> ( ( x C_ B /\ -. x C_ A ) <-> ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) ) |
| 17 | 16 | rexbidva | |- ( A C. B -> ( E. x e. HAtoms ( x C_ B /\ -. x C_ A ) <-> E. x e. HAtoms ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) ) |
| 18 | 3 17 | mpbid | |- ( A C. B -> E. x e. HAtoms ( A C. ( A vH x ) /\ ( A vH x ) C_ B ) ) |