This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The second Chebyshev function is weakly increasing. (Contributed by Mario Carneiro, 9-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chpwordi | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( psi ` A ) <_ ( psi ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( 1 ... ( |_ ` B ) ) e. Fin ) |
|
| 2 | elfznn | |- ( n e. ( 1 ... ( |_ ` B ) ) -> n e. NN ) |
|
| 3 | 2 | adantl | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ n e. ( 1 ... ( |_ ` B ) ) ) -> n e. NN ) |
| 4 | vmacl | |- ( n e. NN -> ( Lam ` n ) e. RR ) |
|
| 5 | 3 4 | syl | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ n e. ( 1 ... ( |_ ` B ) ) ) -> ( Lam ` n ) e. RR ) |
| 6 | vmage0 | |- ( n e. NN -> 0 <_ ( Lam ` n ) ) |
|
| 7 | 3 6 | syl | |- ( ( ( A e. RR /\ B e. RR /\ A <_ B ) /\ n e. ( 1 ... ( |_ ` B ) ) ) -> 0 <_ ( Lam ` n ) ) |
| 8 | flword2 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( |_ ` B ) e. ( ZZ>= ` ( |_ ` A ) ) ) |
|
| 9 | fzss2 | |- ( ( |_ ` B ) e. ( ZZ>= ` ( |_ ` A ) ) -> ( 1 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` B ) ) ) |
|
| 10 | 8 9 | syl | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( 1 ... ( |_ ` A ) ) C_ ( 1 ... ( |_ ` B ) ) ) |
| 11 | 1 5 7 10 | fsumless | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) <_ sum_ n e. ( 1 ... ( |_ ` B ) ) ( Lam ` n ) ) |
| 12 | chpval | |- ( A e. RR -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) |
|
| 13 | 12 | 3ad2ant1 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( psi ` A ) = sum_ n e. ( 1 ... ( |_ ` A ) ) ( Lam ` n ) ) |
| 14 | chpval | |- ( B e. RR -> ( psi ` B ) = sum_ n e. ( 1 ... ( |_ ` B ) ) ( Lam ` n ) ) |
|
| 15 | 14 | 3ad2ant2 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( psi ` B ) = sum_ n e. ( 1 ... ( |_ ` B ) ) ( Lam ` n ) ) |
| 16 | 11 13 15 | 3brtr4d | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( psi ` A ) <_ ( psi ` B ) ) |