This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed subspace of a pre-Hilbert space is a linear subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | csslss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| csslss.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | csslss | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ∈ 𝐿 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csslss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 2 | csslss.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
| 4 | 3 1 | cssi | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) |
| 5 | 4 | adantl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑆 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) |
| 6 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 7 | 6 3 | ocvss | ⊢ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝑊 ) |
| 8 | 7 | a1i | ⊢ ( 𝑆 ∈ 𝐶 → ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝑊 ) ) |
| 9 | 6 3 2 | ocvlss | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝑊 ) ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ∈ 𝐿 ) |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐶 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ∈ 𝐿 ) |
| 11 | 5 10 | eqeltrd | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ∈ 𝐿 ) |