This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed subspace of a subcomplex Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 10-Apr-2008) (Revised by AV, 8-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cmslsschl.x | |- X = ( W |`s U ) |
|
| chlcsschl.s | |- S = ( ClSubSp ` W ) |
||
| Assertion | chlcsschl | |- ( ( W e. CHil /\ U e. S ) -> X e. CHil ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cmslsschl.x | |- X = ( W |`s U ) |
|
| 2 | chlcsschl.s | |- S = ( ClSubSp ` W ) |
|
| 3 | hlbn | |- ( W e. CHil -> W e. Ban ) |
|
| 4 | hlcph | |- ( W e. CHil -> W e. CPreHil ) |
|
| 5 | 3 4 | jca | |- ( W e. CHil -> ( W e. Ban /\ W e. CPreHil ) ) |
| 6 | 1 2 | bncssbn | |- ( ( ( W e. Ban /\ W e. CPreHil ) /\ U e. S ) -> X e. Ban ) |
| 7 | 5 6 | sylan | |- ( ( W e. CHil /\ U e. S ) -> X e. Ban ) |
| 8 | hlphl | |- ( W e. CHil -> W e. PreHil ) |
|
| 9 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 10 | 2 9 | csslss | |- ( ( W e. PreHil /\ U e. S ) -> U e. ( LSubSp ` W ) ) |
| 11 | 8 10 | sylan | |- ( ( W e. CHil /\ U e. S ) -> U e. ( LSubSp ` W ) ) |
| 12 | 1 9 | cphsscph | |- ( ( W e. CPreHil /\ U e. ( LSubSp ` W ) ) -> X e. CPreHil ) |
| 13 | 4 11 12 | syl2an2r | |- ( ( W e. CHil /\ U e. S ) -> X e. CPreHil ) |
| 14 | ishl | |- ( X e. CHil <-> ( X e. Ban /\ X e. CPreHil ) ) |
|
| 15 | 7 13 14 | sylanbrc | |- ( ( W e. CHil /\ U e. S ) -> X e. CHil ) |