This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cofinality is bounded by the cardinality of its argument. (Contributed by NM, 24-Apr-2004) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cflecard | ⊢ ( cf ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfval | ⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) | |
| 2 | df-sn | ⊢ { ( card ‘ 𝐴 ) } = { 𝑥 ∣ 𝑥 = ( card ‘ 𝐴 ) } | |
| 3 | ssid | ⊢ 𝐴 ⊆ 𝐴 | |
| 4 | ssid | ⊢ 𝑧 ⊆ 𝑧 | |
| 5 | sseq2 | ⊢ ( 𝑤 = 𝑧 → ( 𝑧 ⊆ 𝑤 ↔ 𝑧 ⊆ 𝑧 ) ) | |
| 6 | 5 | rspcev | ⊢ ( ( 𝑧 ∈ 𝐴 ∧ 𝑧 ⊆ 𝑧 ) → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
| 7 | 4 6 | mpan2 | ⊢ ( 𝑧 ∈ 𝐴 → ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
| 8 | 7 | rgen | ⊢ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 |
| 9 | 3 8 | pm3.2i | ⊢ ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) |
| 10 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( card ‘ 𝑦 ) = ( card ‘ 𝐴 ) ) | |
| 11 | 10 | eqeq2d | ⊢ ( 𝑦 = 𝐴 → ( 𝑥 = ( card ‘ 𝑦 ) ↔ 𝑥 = ( card ‘ 𝐴 ) ) ) |
| 12 | sseq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊆ 𝐴 ↔ 𝐴 ⊆ 𝐴 ) ) | |
| 13 | rexeq | ⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) | |
| 14 | 13 | ralbidv | ⊢ ( 𝑦 = 𝐴 → ( ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ↔ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) |
| 15 | 12 14 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ↔ ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) ) |
| 16 | 11 15 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ↔ ( 𝑥 = ( card ‘ 𝐴 ) ∧ ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) ) ) |
| 17 | 16 | spcegv | ⊢ ( 𝐴 ∈ On → ( ( 𝑥 = ( card ‘ 𝐴 ) ∧ ( 𝐴 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝐴 𝑧 ⊆ 𝑤 ) ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) ) |
| 18 | 9 17 | mpan2i | ⊢ ( 𝐴 ∈ On → ( 𝑥 = ( card ‘ 𝐴 ) → ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) ) ) |
| 19 | 18 | ss2abdv | ⊢ ( 𝐴 ∈ On → { 𝑥 ∣ 𝑥 = ( card ‘ 𝐴 ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 20 | 2 19 | eqsstrid | ⊢ ( 𝐴 ∈ On → { ( card ‘ 𝐴 ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ) |
| 21 | intss | ⊢ ( { ( card ‘ 𝐴 ) } ⊆ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ ∩ { ( card ‘ 𝐴 ) } ) | |
| 22 | 20 21 | syl | ⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ ∩ { ( card ‘ 𝐴 ) } ) |
| 23 | fvex | ⊢ ( card ‘ 𝐴 ) ∈ V | |
| 24 | 23 | intsn | ⊢ ∩ { ( card ‘ 𝐴 ) } = ( card ‘ 𝐴 ) |
| 25 | 22 24 | sseqtrdi | ⊢ ( 𝐴 ∈ On → ∩ { 𝑥 ∣ ∃ 𝑦 ( 𝑥 = ( card ‘ 𝑦 ) ∧ ( 𝑦 ⊆ 𝐴 ∧ ∀ 𝑧 ∈ 𝐴 ∃ 𝑤 ∈ 𝑦 𝑧 ⊆ 𝑤 ) ) } ⊆ ( card ‘ 𝐴 ) ) |
| 26 | 1 25 | eqsstrd | ⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) ) |
| 27 | cff | ⊢ cf : On ⟶ On | |
| 28 | 27 | fdmi | ⊢ dom cf = On |
| 29 | 28 | eleq2i | ⊢ ( 𝐴 ∈ dom cf ↔ 𝐴 ∈ On ) |
| 30 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom cf → ( cf ‘ 𝐴 ) = ∅ ) | |
| 31 | 29 30 | sylnbir | ⊢ ( ¬ 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∅ ) |
| 32 | 0ss | ⊢ ∅ ⊆ ( card ‘ 𝐴 ) | |
| 33 | 31 32 | eqsstrdi | ⊢ ( ¬ 𝐴 ∈ On → ( cf ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) ) |
| 34 | 26 33 | pm2.61i | ⊢ ( cf ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) |