This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of Cauchy filters on a metric space. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfilfval | |- ( D e. ( *Met ` X ) -> ( CauFil ` D ) = { f e. ( Fil ` X ) | A. x e. RR+ E. y e. f ( D " ( y X. y ) ) C_ ( 0 [,) x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvssunirn | |- ( *Met ` X ) C_ U. ran *Met |
|
| 2 | 1 | sseli | |- ( D e. ( *Met ` X ) -> D e. U. ran *Met ) |
| 3 | dmeq | |- ( d = D -> dom d = dom D ) |
|
| 4 | 3 | dmeqd | |- ( d = D -> dom dom d = dom dom D ) |
| 5 | 4 | fveq2d | |- ( d = D -> ( Fil ` dom dom d ) = ( Fil ` dom dom D ) ) |
| 6 | imaeq1 | |- ( d = D -> ( d " ( y X. y ) ) = ( D " ( y X. y ) ) ) |
|
| 7 | 6 | sseq1d | |- ( d = D -> ( ( d " ( y X. y ) ) C_ ( 0 [,) x ) <-> ( D " ( y X. y ) ) C_ ( 0 [,) x ) ) ) |
| 8 | 7 | rexbidv | |- ( d = D -> ( E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) <-> E. y e. f ( D " ( y X. y ) ) C_ ( 0 [,) x ) ) ) |
| 9 | 8 | ralbidv | |- ( d = D -> ( A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) <-> A. x e. RR+ E. y e. f ( D " ( y X. y ) ) C_ ( 0 [,) x ) ) ) |
| 10 | 5 9 | rabeqbidv | |- ( d = D -> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } = { f e. ( Fil ` dom dom D ) | A. x e. RR+ E. y e. f ( D " ( y X. y ) ) C_ ( 0 [,) x ) } ) |
| 11 | df-cfil | |- CauFil = ( d e. U. ran *Met |-> { f e. ( Fil ` dom dom d ) | A. x e. RR+ E. y e. f ( d " ( y X. y ) ) C_ ( 0 [,) x ) } ) |
|
| 12 | fvex | |- ( Fil ` dom dom D ) e. _V |
|
| 13 | 12 | rabex | |- { f e. ( Fil ` dom dom D ) | A. x e. RR+ E. y e. f ( D " ( y X. y ) ) C_ ( 0 [,) x ) } e. _V |
| 14 | 10 11 13 | fvmpt | |- ( D e. U. ran *Met -> ( CauFil ` D ) = { f e. ( Fil ` dom dom D ) | A. x e. RR+ E. y e. f ( D " ( y X. y ) ) C_ ( 0 [,) x ) } ) |
| 15 | 2 14 | syl | |- ( D e. ( *Met ` X ) -> ( CauFil ` D ) = { f e. ( Fil ` dom dom D ) | A. x e. RR+ E. y e. f ( D " ( y X. y ) ) C_ ( 0 [,) x ) } ) |
| 16 | xmetdmdm | |- ( D e. ( *Met ` X ) -> X = dom dom D ) |
|
| 17 | 16 | fveq2d | |- ( D e. ( *Met ` X ) -> ( Fil ` X ) = ( Fil ` dom dom D ) ) |
| 18 | 17 | rabeqdv | |- ( D e. ( *Met ` X ) -> { f e. ( Fil ` X ) | A. x e. RR+ E. y e. f ( D " ( y X. y ) ) C_ ( 0 [,) x ) } = { f e. ( Fil ` dom dom D ) | A. x e. RR+ E. y e. f ( D " ( y X. y ) ) C_ ( 0 [,) x ) } ) |
| 19 | 15 18 | eqtr4d | |- ( D e. ( *Met ` X ) -> ( CauFil ` D ) = { f e. ( Fil ` X ) | A. x e. RR+ E. y e. f ( D " ( y X. y ) ) C_ ( 0 [,) x ) } ) |