This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsex3v.1 | ⊢ 𝐴 ∈ V | |
| ceqsex3v.2 | ⊢ 𝐵 ∈ V | ||
| ceqsex3v.3 | ⊢ 𝐶 ∈ V | ||
| ceqsex3v.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ceqsex3v.5 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| ceqsex3v.6 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
| Assertion | ceqsex3v | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex3v.1 | ⊢ 𝐴 ∈ V | |
| 2 | ceqsex3v.2 | ⊢ 𝐵 ∈ V | |
| 3 | ceqsex3v.3 | ⊢ 𝐶 ∈ V | |
| 4 | ceqsex3v.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 5 | ceqsex3v.5 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 6 | ceqsex3v.6 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
| 7 | anass | ⊢ ( ( ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ) ) | |
| 8 | 3anass | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ) ) | |
| 9 | 8 | anbi1i | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ) ∧ 𝜑 ) ) |
| 10 | df-3an | ⊢ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ↔ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ) | |
| 11 | 10 | anbi2i | ⊢ ( ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ) ) |
| 12 | 7 9 11 | 3bitr4i | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ) |
| 13 | 12 | 2exbii | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ) |
| 14 | 19.42vv | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑥 = 𝐴 ∧ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ) | |
| 15 | 13 14 | bitri | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ) |
| 16 | 15 | exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ) |
| 17 | 4 | 3anbi3d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ↔ ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓 ) ) ) |
| 18 | 17 | 2exbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓 ) ) ) |
| 19 | 1 18 | ceqsexv | ⊢ ( ∃ 𝑥 ( 𝑥 = 𝐴 ∧ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜑 ) ) ↔ ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓 ) ) |
| 20 | 2 3 5 6 | ceqsex2v | ⊢ ( ∃ 𝑦 ∃ 𝑧 ( 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ∧ 𝜓 ) ↔ 𝜃 ) |
| 21 | 16 19 20 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ 𝑧 = 𝐶 ) ∧ 𝜑 ) ↔ 𝜃 ) |