This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of three existential quantifiers, using implicit substitution. (Contributed by NM, 16-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsex3v.1 | |- A e. _V |
|
| ceqsex3v.2 | |- B e. _V |
||
| ceqsex3v.3 | |- C e. _V |
||
| ceqsex3v.4 | |- ( x = A -> ( ph <-> ps ) ) |
||
| ceqsex3v.5 | |- ( y = B -> ( ps <-> ch ) ) |
||
| ceqsex3v.6 | |- ( z = C -> ( ch <-> th ) ) |
||
| Assertion | ceqsex3v | |- ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex3v.1 | |- A e. _V |
|
| 2 | ceqsex3v.2 | |- B e. _V |
|
| 3 | ceqsex3v.3 | |- C e. _V |
|
| 4 | ceqsex3v.4 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 5 | ceqsex3v.5 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 6 | ceqsex3v.6 | |- ( z = C -> ( ch <-> th ) ) |
|
| 7 | anass | |- ( ( ( x = A /\ ( y = B /\ z = C ) ) /\ ph ) <-> ( x = A /\ ( ( y = B /\ z = C ) /\ ph ) ) ) |
|
| 8 | 3anass | |- ( ( x = A /\ y = B /\ z = C ) <-> ( x = A /\ ( y = B /\ z = C ) ) ) |
|
| 9 | 8 | anbi1i | |- ( ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> ( ( x = A /\ ( y = B /\ z = C ) ) /\ ph ) ) |
| 10 | df-3an | |- ( ( y = B /\ z = C /\ ph ) <-> ( ( y = B /\ z = C ) /\ ph ) ) |
|
| 11 | 10 | anbi2i | |- ( ( x = A /\ ( y = B /\ z = C /\ ph ) ) <-> ( x = A /\ ( ( y = B /\ z = C ) /\ ph ) ) ) |
| 12 | 7 9 11 | 3bitr4i | |- ( ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> ( x = A /\ ( y = B /\ z = C /\ ph ) ) ) |
| 13 | 12 | 2exbii | |- ( E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> E. y E. z ( x = A /\ ( y = B /\ z = C /\ ph ) ) ) |
| 14 | 19.42vv | |- ( E. y E. z ( x = A /\ ( y = B /\ z = C /\ ph ) ) <-> ( x = A /\ E. y E. z ( y = B /\ z = C /\ ph ) ) ) |
|
| 15 | 13 14 | bitri | |- ( E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> ( x = A /\ E. y E. z ( y = B /\ z = C /\ ph ) ) ) |
| 16 | 15 | exbii | |- ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> E. x ( x = A /\ E. y E. z ( y = B /\ z = C /\ ph ) ) ) |
| 17 | 4 | 3anbi3d | |- ( x = A -> ( ( y = B /\ z = C /\ ph ) <-> ( y = B /\ z = C /\ ps ) ) ) |
| 18 | 17 | 2exbidv | |- ( x = A -> ( E. y E. z ( y = B /\ z = C /\ ph ) <-> E. y E. z ( y = B /\ z = C /\ ps ) ) ) |
| 19 | 1 18 | ceqsexv | |- ( E. x ( x = A /\ E. y E. z ( y = B /\ z = C /\ ph ) ) <-> E. y E. z ( y = B /\ z = C /\ ps ) ) |
| 20 | 2 3 5 6 | ceqsex2v | |- ( E. y E. z ( y = B /\ z = C /\ ps ) <-> th ) |
| 21 | 16 19 20 | 3bitri | |- ( E. x E. y E. z ( ( x = A /\ y = B /\ z = C ) /\ ph ) <-> th ) |