This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elimination of four existential quantifiers, using implicit substitution. (Contributed by NM, 23-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ceqsex4v.1 | ⊢ 𝐴 ∈ V | |
| ceqsex4v.2 | ⊢ 𝐵 ∈ V | ||
| ceqsex4v.3 | ⊢ 𝐶 ∈ V | ||
| ceqsex4v.4 | ⊢ 𝐷 ∈ V | ||
| ceqsex4v.7 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| ceqsex4v.8 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| ceqsex4v.9 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
| ceqsex4v.10 | ⊢ ( 𝑤 = 𝐷 → ( 𝜃 ↔ 𝜏 ) ) | ||
| Assertion | ceqsex4v | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsex4v.1 | ⊢ 𝐴 ∈ V | |
| 2 | ceqsex4v.2 | ⊢ 𝐵 ∈ V | |
| 3 | ceqsex4v.3 | ⊢ 𝐶 ∈ V | |
| 4 | ceqsex4v.4 | ⊢ 𝐷 ∈ V | |
| 5 | ceqsex4v.7 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 6 | ceqsex4v.8 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 7 | ceqsex4v.9 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
| 8 | ceqsex4v.10 | ⊢ ( 𝑤 = 𝐷 → ( 𝜃 ↔ 𝜏 ) ) | |
| 9 | 19.42vv | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) | |
| 10 | 3anass | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ) ) | |
| 11 | df-3an | ⊢ ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ↔ ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ) | |
| 12 | 11 | anbi2i | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ) ) |
| 13 | 10 12 | bitr4i | ⊢ ( ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) |
| 14 | 13 | 2exbii | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) |
| 15 | df-3an | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ↔ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) | |
| 16 | 9 14 15 | 3bitr4i | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) |
| 17 | 16 | 2exbii | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ) |
| 18 | 5 | 3anbi3d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ↔ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓 ) ) ) |
| 19 | 18 | 2exbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓 ) ) ) |
| 20 | 6 | 3anbi3d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓 ) ↔ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒 ) ) ) |
| 21 | 20 | 2exbidv | ⊢ ( 𝑦 = 𝐵 → ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜓 ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒 ) ) ) |
| 22 | 1 2 19 21 | ceqsex2v | ⊢ ( ∃ 𝑥 ∃ 𝑦 ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ∧ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜑 ) ) ↔ ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒 ) ) |
| 23 | 3 4 7 8 | ceqsex2v | ⊢ ( ∃ 𝑧 ∃ 𝑤 ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ∧ 𝜒 ) ↔ 𝜏 ) |
| 24 | 17 22 23 | 3bitri | ⊢ ( ∃ 𝑥 ∃ 𝑦 ∃ 𝑧 ∃ 𝑤 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) ∧ ( 𝑧 = 𝐶 ∧ 𝑤 = 𝐷 ) ∧ 𝜑 ) ↔ 𝜏 ) |