This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership of an integer in an extended open range of integers, extension added to the right. (Contributed by AV, 30-Apr-2020) (Proof shortened by AV, 23-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfzoext | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑍 ∈ ( 𝑀 ..^ ( 𝑁 + 𝐼 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzoextl | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑍 ∈ ( 𝑀 ..^ ( 𝐼 + 𝑁 ) ) ) | |
| 2 | elfzoel2 | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℤ ) | |
| 3 | 2 | zcnd | ⊢ ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑁 ∈ ℂ ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 5 | nn0cn | ⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℂ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝐼 ∈ ℂ ) |
| 7 | 4 6 | addcomd | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝑁 + 𝐼 ) = ( 𝐼 + 𝑁 ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → ( 𝑀 ..^ ( 𝑁 + 𝐼 ) ) = ( 𝑀 ..^ ( 𝐼 + 𝑁 ) ) ) |
| 9 | 1 8 | eleqtrrd | ⊢ ( ( 𝑍 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝐼 ∈ ℕ0 ) → 𝑍 ∈ ( 𝑀 ..^ ( 𝑁 + 𝐼 ) ) ) |