This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol of the left (nonempty) half of a concatenated word. (Contributed by Alexander van der Vekens, 3-Oct-2018) (Proof shortened by AV, 1-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatval1lsw | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( lastS ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lennncl | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) | |
| 2 | 1 | 3adant2 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ℕ ) |
| 3 | fzo0end | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℕ → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
| 5 | ccatval1 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝐴 ) − 1 ) ∈ ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) | |
| 6 | 4 5 | syld3an3 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 7 | lsw | ⊢ ( 𝐴 ∈ Word 𝑉 → ( lastS ‘ 𝐴 ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) | |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( lastS ‘ 𝐴 ) = ( 𝐴 ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) ) |
| 9 | 6 8 | eqtr4d | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐴 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ( ♯ ‘ 𝐴 ) − 1 ) ) = ( lastS ‘ 𝐴 ) ) |