This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first symbol of a concatenation of two words is the first symbol of the first word if the first word is not empty. (Contributed by Alexander van der Vekens, 22-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatfv0 | |- ( ( A e. Word V /\ B e. Word V /\ 0 < ( # ` A ) ) -> ( ( A ++ B ) ` 0 ) = ( A ` 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | |- ( A e. Word V -> ( # ` A ) e. NN0 ) |
|
| 2 | elnnnn0b | |- ( ( # ` A ) e. NN <-> ( ( # ` A ) e. NN0 /\ 0 < ( # ` A ) ) ) |
|
| 3 | 2 | biimpri | |- ( ( ( # ` A ) e. NN0 /\ 0 < ( # ` A ) ) -> ( # ` A ) e. NN ) |
| 4 | 1 3 | sylan | |- ( ( A e. Word V /\ 0 < ( # ` A ) ) -> ( # ` A ) e. NN ) |
| 5 | lbfzo0 | |- ( 0 e. ( 0 ..^ ( # ` A ) ) <-> ( # ` A ) e. NN ) |
|
| 6 | 4 5 | sylibr | |- ( ( A e. Word V /\ 0 < ( # ` A ) ) -> 0 e. ( 0 ..^ ( # ` A ) ) ) |
| 7 | 6 | 3adant2 | |- ( ( A e. Word V /\ B e. Word V /\ 0 < ( # ` A ) ) -> 0 e. ( 0 ..^ ( # ` A ) ) ) |
| 8 | ccatval1 | |- ( ( A e. Word V /\ B e. Word V /\ 0 e. ( 0 ..^ ( # ` A ) ) ) -> ( ( A ++ B ) ` 0 ) = ( A ` 0 ) ) |
|
| 9 | 7 8 | syld3an3 | |- ( ( A e. Word V /\ B e. Word V /\ 0 < ( # ` A ) ) -> ( ( A ++ B ) ` 0 ) = ( A ` 0 ) ) |