This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of ccat2s1fvw using words of length 2, see df-s2 . A symbol of the concatenation of a word with two single symbols corresponding to the symbol of the word. (Contributed by AV, 22-Sep-2018) (Proof shortened by Mario Carneiro/AV, 21-Oct-2018) (Revised by AV, 28-Jan-2024) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccat2s1fvwALT | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatw2s1ccatws2 | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) = ( 𝑊 ++ 〈“ 𝑋 𝑌 ”〉 ) ) | |
| 2 | 1 | fveq1d | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝐼 ) = ( ( 𝑊 ++ 〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 ) ) |
| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝐼 ) = ( ( 𝑊 ++ 〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 ) ) |
| 4 | simp1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 5 | s2cli | ⊢ 〈“ 𝑋 𝑌 ”〉 ∈ Word V | |
| 6 | 5 | a1i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 〈“ 𝑋 𝑌 ”〉 ∈ Word V ) |
| 7 | simp2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℕ0 ) | |
| 8 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 9 | 8 | nn0zd | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
| 11 | simp3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝐼 < ( ♯ ‘ 𝑊 ) ) | |
| 12 | elfzo0z | ⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) ) | |
| 13 | 7 10 11 12 | syl3anbrc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 14 | ccatval1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 〈“ 𝑋 𝑌 ”〉 ∈ Word V ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 ++ 〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) | |
| 15 | 4 6 13 14 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ++ 〈“ 𝑋 𝑌 ”〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |
| 16 | 3 15 | eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐼 ∈ ℕ0 ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( ( 𝑊 ++ 〈“ 𝑋 ”〉 ) ++ 〈“ 𝑌 ”〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |