This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo allows B to be a function of x . (Contributed by NM, 29-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cbvmpox.1 | |- F/_ z B |
|
| cbvmpox.2 | |- F/_ x D |
||
| cbvmpox.3 | |- F/_ z C |
||
| cbvmpox.4 | |- F/_ w C |
||
| cbvmpox.5 | |- F/_ x E |
||
| cbvmpox.6 | |- F/_ y E |
||
| cbvmpox.7 | |- ( x = z -> B = D ) |
||
| cbvmpox.8 | |- ( ( x = z /\ y = w ) -> C = E ) |
||
| Assertion | cbvmpox | |- ( x e. A , y e. B |-> C ) = ( z e. A , w e. D |-> E ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvmpox.1 | |- F/_ z B |
|
| 2 | cbvmpox.2 | |- F/_ x D |
|
| 3 | cbvmpox.3 | |- F/_ z C |
|
| 4 | cbvmpox.4 | |- F/_ w C |
|
| 5 | cbvmpox.5 | |- F/_ x E |
|
| 6 | cbvmpox.6 | |- F/_ y E |
|
| 7 | cbvmpox.7 | |- ( x = z -> B = D ) |
|
| 8 | cbvmpox.8 | |- ( ( x = z /\ y = w ) -> C = E ) |
|
| 9 | nfv | |- F/ z x e. A |
|
| 10 | 1 | nfcri | |- F/ z y e. B |
| 11 | 9 10 | nfan | |- F/ z ( x e. A /\ y e. B ) |
| 12 | 3 | nfeq2 | |- F/ z u = C |
| 13 | 11 12 | nfan | |- F/ z ( ( x e. A /\ y e. B ) /\ u = C ) |
| 14 | nfv | |- F/ w x e. A |
|
| 15 | nfcv | |- F/_ w B |
|
| 16 | 15 | nfcri | |- F/ w y e. B |
| 17 | 14 16 | nfan | |- F/ w ( x e. A /\ y e. B ) |
| 18 | 4 | nfeq2 | |- F/ w u = C |
| 19 | 17 18 | nfan | |- F/ w ( ( x e. A /\ y e. B ) /\ u = C ) |
| 20 | nfv | |- F/ x z e. A |
|
| 21 | 2 | nfcri | |- F/ x w e. D |
| 22 | 20 21 | nfan | |- F/ x ( z e. A /\ w e. D ) |
| 23 | 5 | nfeq2 | |- F/ x u = E |
| 24 | 22 23 | nfan | |- F/ x ( ( z e. A /\ w e. D ) /\ u = E ) |
| 25 | nfv | |- F/ y ( z e. A /\ w e. D ) |
|
| 26 | 6 | nfeq2 | |- F/ y u = E |
| 27 | 25 26 | nfan | |- F/ y ( ( z e. A /\ w e. D ) /\ u = E ) |
| 28 | eleq1w | |- ( x = z -> ( x e. A <-> z e. A ) ) |
|
| 29 | 28 | adantr | |- ( ( x = z /\ y = w ) -> ( x e. A <-> z e. A ) ) |
| 30 | 7 | eleq2d | |- ( x = z -> ( y e. B <-> y e. D ) ) |
| 31 | eleq1w | |- ( y = w -> ( y e. D <-> w e. D ) ) |
|
| 32 | 30 31 | sylan9bb | |- ( ( x = z /\ y = w ) -> ( y e. B <-> w e. D ) ) |
| 33 | 29 32 | anbi12d | |- ( ( x = z /\ y = w ) -> ( ( x e. A /\ y e. B ) <-> ( z e. A /\ w e. D ) ) ) |
| 34 | 8 | eqeq2d | |- ( ( x = z /\ y = w ) -> ( u = C <-> u = E ) ) |
| 35 | 33 34 | anbi12d | |- ( ( x = z /\ y = w ) -> ( ( ( x e. A /\ y e. B ) /\ u = C ) <-> ( ( z e. A /\ w e. D ) /\ u = E ) ) ) |
| 36 | 13 19 24 27 35 | cbvoprab12 | |- { <. <. x , y >. , u >. | ( ( x e. A /\ y e. B ) /\ u = C ) } = { <. <. z , w >. , u >. | ( ( z e. A /\ w e. D ) /\ u = E ) } |
| 37 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , u >. | ( ( x e. A /\ y e. B ) /\ u = C ) } |
|
| 38 | df-mpo | |- ( z e. A , w e. D |-> E ) = { <. <. z , w >. , u >. | ( ( z e. A /\ w e. D ) /\ u = E ) } |
|
| 39 | 36 37 38 | 3eqtr4i | |- ( x e. A , y e. B |-> C ) = ( z e. A , w e. D |-> E ) |