This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of Cauchy sequences on a given extended metric space. (Contributed by NM, 8-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-cau | ⊢ Cau = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ccau | ⊢ Cau | |
| 1 | vd | ⊢ 𝑑 | |
| 2 | cxmet | ⊢ ∞Met | |
| 3 | 2 | crn | ⊢ ran ∞Met |
| 4 | 3 | cuni | ⊢ ∪ ran ∞Met |
| 5 | vf | ⊢ 𝑓 | |
| 6 | 1 | cv | ⊢ 𝑑 |
| 7 | 6 | cdm | ⊢ dom 𝑑 |
| 8 | 7 | cdm | ⊢ dom dom 𝑑 |
| 9 | cpm | ⊢ ↑pm | |
| 10 | cc | ⊢ ℂ | |
| 11 | 8 10 9 | co | ⊢ ( dom dom 𝑑 ↑pm ℂ ) |
| 12 | vx | ⊢ 𝑥 | |
| 13 | crp | ⊢ ℝ+ | |
| 14 | vj | ⊢ 𝑗 | |
| 15 | cz | ⊢ ℤ | |
| 16 | 5 | cv | ⊢ 𝑓 |
| 17 | cuz | ⊢ ℤ≥ | |
| 18 | 14 | cv | ⊢ 𝑗 |
| 19 | 18 17 | cfv | ⊢ ( ℤ≥ ‘ 𝑗 ) |
| 20 | 16 19 | cres | ⊢ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) |
| 21 | 18 16 | cfv | ⊢ ( 𝑓 ‘ 𝑗 ) |
| 22 | cbl | ⊢ ball | |
| 23 | 6 22 | cfv | ⊢ ( ball ‘ 𝑑 ) |
| 24 | 12 | cv | ⊢ 𝑥 |
| 25 | 21 24 23 | co | ⊢ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
| 26 | 19 25 20 | wf | ⊢ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
| 27 | 26 14 15 | wrex | ⊢ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
| 28 | 27 12 13 | wral | ⊢ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) |
| 29 | 28 5 11 | crab | ⊢ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } |
| 30 | 1 4 29 | cmpt | ⊢ ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } ) |
| 31 | 0 30 | wceq | ⊢ Cau = ( 𝑑 ∈ ∪ ran ∞Met ↦ { 𝑓 ∈ ( dom dom 𝑑 ↑pm ℂ ) ∣ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝑑 ) 𝑥 ) } ) |