This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of Cauchy sequences on a metric space. (Contributed by NM, 8-Sep-2006) (Revised by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | caufval | |- ( D e. ( *Met ` X ) -> ( Cau ` D ) = { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cau | |- Cau = ( d e. U. ran *Met |-> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) } ) |
|
| 2 | dmeq | |- ( d = D -> dom d = dom D ) |
|
| 3 | 2 | dmeqd | |- ( d = D -> dom dom d = dom dom D ) |
| 4 | xmetf | |- ( D e. ( *Met ` X ) -> D : ( X X. X ) --> RR* ) |
|
| 5 | 4 | fdmd | |- ( D e. ( *Met ` X ) -> dom D = ( X X. X ) ) |
| 6 | 5 | dmeqd | |- ( D e. ( *Met ` X ) -> dom dom D = dom ( X X. X ) ) |
| 7 | dmxpid | |- dom ( X X. X ) = X |
|
| 8 | 6 7 | eqtrdi | |- ( D e. ( *Met ` X ) -> dom dom D = X ) |
| 9 | 3 8 | sylan9eqr | |- ( ( D e. ( *Met ` X ) /\ d = D ) -> dom dom d = X ) |
| 10 | 9 | oveq1d | |- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( dom dom d ^pm CC ) = ( X ^pm CC ) ) |
| 11 | simpr | |- ( ( D e. ( *Met ` X ) /\ d = D ) -> d = D ) |
|
| 12 | 11 | fveq2d | |- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( ball ` d ) = ( ball ` D ) ) |
| 13 | 12 | oveqd | |- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( ( f ` k ) ( ball ` d ) x ) = ( ( f ` k ) ( ball ` D ) x ) ) |
| 14 | 13 | feq3d | |- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) <-> ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) ) ) |
| 15 | 14 | rexbidv | |- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) <-> E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) ) ) |
| 16 | 15 | ralbidv | |- ( ( D e. ( *Met ` X ) /\ d = D ) -> ( A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) <-> A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) ) ) |
| 17 | 10 16 | rabeqbidv | |- ( ( D e. ( *Met ` X ) /\ d = D ) -> { f e. ( dom dom d ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` d ) x ) } = { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } ) |
| 18 | fvssunirn | |- ( *Met ` X ) C_ U. ran *Met |
|
| 19 | 18 | sseli | |- ( D e. ( *Met ` X ) -> D e. U. ran *Met ) |
| 20 | ovex | |- ( X ^pm CC ) e. _V |
|
| 21 | 20 | rabex | |- { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } e. _V |
| 22 | 21 | a1i | |- ( D e. ( *Met ` X ) -> { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } e. _V ) |
| 23 | 1 17 19 22 | fvmptd2 | |- ( D e. ( *Met ` X ) -> ( Cau ` D ) = { f e. ( X ^pm CC ) | A. x e. RR+ E. k e. ZZ ( f |` ( ZZ>= ` k ) ) : ( ZZ>= ` k ) --> ( ( f ` k ) ( ball ` D ) x ) } ) |