This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any category C , C itself is a (full) subcategory of C , see example 4.3(1.b) in Adamek p. 48. (Contributed by AV, 23-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | catsubcat | ⊢ ( 𝐶 ∈ Cat → ( Homf ‘ 𝐶 ) ∈ ( Subcat ‘ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssidd | ⊢ ( 𝐶 ∈ Cat → ( Base ‘ 𝐶 ) ⊆ ( Base ‘ 𝐶 ) ) | |
| 2 | ssidd | ⊢ ( ( 𝐶 ∈ Cat ∧ ( 𝑥 ∈ ( Base ‘ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ⊆ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ) | |
| 3 | 2 | ralrimivva | ⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ⊆ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ) |
| 4 | eqid | ⊢ ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐶 ) | |
| 5 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 6 | 4 5 | homffn | ⊢ ( Homf ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) |
| 7 | 6 | a1i | ⊢ ( 𝐶 ∈ Cat → ( Homf ‘ 𝐶 ) Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) |
| 8 | fvexd | ⊢ ( 𝐶 ∈ Cat → ( Base ‘ 𝐶 ) ∈ V ) | |
| 9 | 7 7 8 | isssc | ⊢ ( 𝐶 ∈ Cat → ( ( Homf ‘ 𝐶 ) ⊆cat ( Homf ‘ 𝐶 ) ↔ ( ( Base ‘ 𝐶 ) ⊆ ( Base ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ⊆ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ) ) ) |
| 10 | 1 3 9 | mpbir2and | ⊢ ( 𝐶 ∈ Cat → ( Homf ‘ 𝐶 ) ⊆cat ( Homf ‘ 𝐶 ) ) |
| 11 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 12 | eqid | ⊢ ( Id ‘ 𝐶 ) = ( Id ‘ 𝐶 ) | |
| 13 | simpl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝐶 ∈ Cat ) | |
| 14 | simpr | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) | |
| 15 | 5 11 12 13 14 | catidcl | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 16 | 4 5 11 14 14 | homfval | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( 𝑥 ( Homf ‘ 𝐶 ) 𝑥 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑥 ) ) |
| 17 | 15 16 | eleqtrrd | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑥 ) ) |
| 18 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 19 | 13 | adantr | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝐶 ∈ Cat ) |
| 20 | 19 | adantr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝐶 ∈ Cat ) |
| 21 | 14 | adantr | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝑥 ∈ ( Base ‘ 𝐶 ) ) |
| 23 | simpl | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) | |
| 24 | 23 | adantl | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 25 | 24 | adantr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝑦 ∈ ( Base ‘ 𝐶 ) ) |
| 26 | simpr | ⊢ ( ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) | |
| 27 | 26 | adantl | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝑧 ∈ ( Base ‘ 𝐶 ) ) |
| 29 | 4 5 11 21 24 | homfval | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 30 | 29 | eleq2d | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ↔ 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) |
| 31 | 30 | biimpcd | ⊢ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) → ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) → ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) ) |
| 33 | 32 | impcom | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝑓 ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑦 ) ) |
| 34 | 4 5 11 24 27 | homfval | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) = ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 35 | 34 | eleq2d | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ↔ 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 36 | 35 | biimpd | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 37 | 36 | adantld | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) ) |
| 38 | 37 | imp | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → 𝑔 ∈ ( 𝑦 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 39 | 5 11 18 20 22 25 28 33 38 | catcocl | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 40 | 4 5 11 21 27 | homfval | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) = ( 𝑥 ( Hom ‘ 𝐶 ) 𝑧 ) ) |
| 42 | 39 41 | eleqtrrd | ⊢ ( ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) ∧ ( 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∧ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) → ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) |
| 43 | 42 | ralrimivva | ⊢ ( ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) ∧ ( 𝑦 ∈ ( Base ‘ 𝐶 ) ∧ 𝑧 ∈ ( Base ‘ 𝐶 ) ) ) → ∀ 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) |
| 44 | 43 | ralrimivva | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) |
| 45 | 17 44 | jca | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝑥 ∈ ( Base ‘ 𝐶 ) ) → ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) |
| 46 | 45 | ralrimiva | ⊢ ( 𝐶 ∈ Cat → ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) |
| 47 | id | ⊢ ( 𝐶 ∈ Cat → 𝐶 ∈ Cat ) | |
| 48 | 4 12 18 47 7 | issubc2 | ⊢ ( 𝐶 ∈ Cat → ( ( Homf ‘ 𝐶 ) ∈ ( Subcat ‘ 𝐶 ) ↔ ( ( Homf ‘ 𝐶 ) ⊆cat ( Homf ‘ 𝐶 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐶 ) ( ( ( Id ‘ 𝐶 ) ‘ 𝑥 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑥 ) ∧ ∀ 𝑦 ∈ ( Base ‘ 𝐶 ) ∀ 𝑧 ∈ ( Base ‘ 𝐶 ) ∀ 𝑓 ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑦 ) ∀ 𝑔 ∈ ( 𝑦 ( Homf ‘ 𝐶 ) 𝑧 ) ( 𝑔 ( 〈 𝑥 , 𝑦 〉 ( comp ‘ 𝐶 ) 𝑧 ) 𝑓 ) ∈ ( 𝑥 ( Homf ‘ 𝐶 ) 𝑧 ) ) ) ) ) |
| 49 | 10 46 48 | mpbir2and | ⊢ ( 𝐶 ∈ Cat → ( Homf ‘ 𝐶 ) ∈ ( Subcat ‘ 𝐶 ) ) |