This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of being a preordered set (deduction form). (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isprsd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| isprsd.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐾 ) ) | ||
| isprsd.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | ||
| Assertion | isprsd | ⊢ ( 𝜑 → ( 𝐾 ∈ Proset ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isprsd.b | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝐾 ) ) | |
| 2 | isprsd.l | ⊢ ( 𝜑 → ≤ = ( le ‘ 𝐾 ) ) | |
| 3 | isprsd.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑉 ) | |
| 4 | 3 | elexd | ⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 5 | eqid | ⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) | |
| 6 | eqid | ⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) | |
| 7 | 5 6 | isprs | ⊢ ( 𝐾 ∈ Proset ↔ ( 𝐾 ∈ V ∧ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 8 | 7 | baib | ⊢ ( 𝐾 ∈ V → ( 𝐾 ∈ Proset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → ( 𝐾 ∈ Proset ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 10 | 2 | breqd | ⊢ ( 𝜑 → ( 𝑥 ≤ 𝑥 ↔ 𝑥 ( le ‘ 𝐾 ) 𝑥 ) ) |
| 11 | 2 | breqd | ⊢ ( 𝜑 → ( 𝑥 ≤ 𝑦 ↔ 𝑥 ( le ‘ 𝐾 ) 𝑦 ) ) |
| 12 | 2 | breqd | ⊢ ( 𝜑 → ( 𝑦 ≤ 𝑧 ↔ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 13 | 11 12 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) ↔ ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 14 | 2 | breqd | ⊢ ( 𝜑 → ( 𝑥 ≤ 𝑧 ↔ 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) |
| 15 | 13 14 | imbi12d | ⊢ ( 𝜑 → ( ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ↔ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) |
| 16 | 10 15 | anbi12d | ⊢ ( 𝜑 → ( ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 17 | 1 16 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 18 | 1 17 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 19 | 1 18 | raleqbidv | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐾 ) ∀ 𝑦 ∈ ( Base ‘ 𝐾 ) ∀ 𝑧 ∈ ( Base ‘ 𝐾 ) ( 𝑥 ( le ‘ 𝐾 ) 𝑥 ∧ ( ( 𝑥 ( le ‘ 𝐾 ) 𝑦 ∧ 𝑦 ( le ‘ 𝐾 ) 𝑧 ) → 𝑥 ( le ‘ 𝐾 ) 𝑧 ) ) ) ) |
| 20 | 9 19 | bitr4d | ⊢ ( 𝜑 → ( 𝐾 ∈ Proset ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ( 𝑥 ≤ 𝑥 ∧ ( ( 𝑥 ≤ 𝑦 ∧ 𝑦 ≤ 𝑧 ) → 𝑥 ≤ 𝑧 ) ) ) ) |