This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A category equipped with the induced preorder, where an object x is defined to be "less than or equal to" y iff there is a morphism from x to y , is a preordered set, or a proset. The category might not be thin. See catprsc and catprsc2 for constructions satisfying the hypothesis "catprs.1". See catprs for a more primitive version. See prsthinc for constructing a thin category from a proset. (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catprs.1 | ||
| catprs.b | |||
| catprs.h | |||
| catprs.c | |||
| catprs2.l | |||
| Assertion | catprs2 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprs.1 | ||
| 2 | catprs.b | ||
| 3 | catprs.h | ||
| 4 | catprs.c | ||
| 5 | catprs2.l | ||
| 6 | 1 2 3 4 | catprs | |
| 7 | 6 | ralrimivvva | |
| 8 | 2 5 4 | isprsd | |
| 9 | 7 8 | mpbird |