This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A construction of the preorder induced by a category. See catprs2 for details. See also catprsc2 for an alternate construction. (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | catprsc.1 | ⊢ ( 𝜑 → ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } ) | |
| Assertion | catprsc | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprsc.1 | ⊢ ( 𝜑 → ≤ = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } ) | |
| 2 | 1 | breqd | ⊢ ( 𝜑 → ( 𝑧 ≤ 𝑤 ↔ 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } 𝑤 ) ) |
| 3 | vex | ⊢ 𝑧 ∈ V | |
| 4 | vex | ⊢ 𝑤 ∈ V | |
| 5 | simpl | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝑥 = 𝑧 ) | |
| 6 | 5 | eleq1d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑥 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
| 7 | simpr | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → 𝑦 = 𝑤 ) | |
| 8 | 7 | eleq1d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑦 ∈ 𝐵 ↔ 𝑤 ∈ 𝐵 ) ) |
| 9 | oveq12 | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) ) | |
| 10 | 9 | neeq1d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
| 11 | 6 8 10 | 3anbi123d | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) ) |
| 12 | df-3an | ⊢ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) | |
| 13 | 11 12 | bitrdi | ⊢ ( ( 𝑥 = 𝑧 ∧ 𝑦 = 𝑤 ) → ( ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) ) |
| 14 | eqid | ⊢ { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } | |
| 15 | 3 4 13 14 | braba | ⊢ ( 𝑧 { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ∧ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) } 𝑤 ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
| 16 | 2 15 | bitrdi | ⊢ ( 𝜑 → ( 𝑧 ≤ 𝑤 ↔ ( ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ∧ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) ) |
| 17 | 16 | baibd | ⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐵 ∧ 𝑤 ∈ 𝐵 ) ) → ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
| 18 | 17 | ralrimivva | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |