This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for catprs . (Contributed by Zhi Wang, 18-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catprs.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ) | |
| catprslem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| catprslem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| Assertion | catprslem | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catprs.1 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ) | |
| 2 | catprslem.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 3 | catprslem.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 4 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≤ 𝑦 ↔ 𝑧 ≤ 𝑦 ) ) | |
| 5 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑦 ) ) | |
| 6 | 5 | neeq1d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑦 ) ≠ ∅ ) ) |
| 7 | 4 6 | bibi12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ( 𝑧 ≤ 𝑦 ↔ ( 𝑧 𝐻 𝑦 ) ≠ ∅ ) ) ) |
| 8 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 ≤ 𝑦 ↔ 𝑧 ≤ 𝑤 ) ) | |
| 9 | oveq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 𝐻 𝑦 ) = ( 𝑧 𝐻 𝑤 ) ) | |
| 10 | 9 | neeq1d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 𝐻 𝑦 ) ≠ ∅ ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
| 11 | 8 10 | bibi12d | ⊢ ( 𝑦 = 𝑤 → ( ( 𝑧 ≤ 𝑦 ↔ ( 𝑧 𝐻 𝑦 ) ≠ ∅ ) ↔ ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) ) |
| 12 | 7 11 | cbvral2vw | ⊢ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ↔ ( 𝑥 𝐻 𝑦 ) ≠ ∅ ) ↔ ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
| 13 | 1 12 | sylib | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ) |
| 14 | breq12 | ⊢ ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) → ( 𝑧 ≤ 𝑤 ↔ 𝑋 ≤ 𝑌 ) ) | |
| 15 | oveq12 | ⊢ ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) → ( 𝑧 𝐻 𝑤 ) = ( 𝑋 𝐻 𝑌 ) ) | |
| 16 | 15 | neeq1d | ⊢ ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) → ( ( 𝑧 𝐻 𝑤 ) ≠ ∅ ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) |
| 17 | 14 16 | bibi12d | ⊢ ( ( 𝑧 = 𝑋 ∧ 𝑤 = 𝑌 ) → ( ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) ↔ ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) ) |
| 18 | 17 | rspc2gv | ⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) ) |
| 19 | 2 3 18 | syl2anc | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝐵 ( 𝑧 ≤ 𝑤 ↔ ( 𝑧 𝐻 𝑤 ) ≠ ∅ ) → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) ) |
| 20 | 13 19 | mpd | ⊢ ( 𝜑 → ( 𝑋 ≤ 𝑌 ↔ ( 𝑋 𝐻 𝑌 ) ≠ ∅ ) ) |